首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

2.
During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness.  相似文献   

3.
alpha-Lactalbumin, a small calcium-binding protein, forms an equilibrium molten globule state under a variety of conditions. A set of four peptides designed to probe the role of local interactions and the role of potential long-range interactions in stabilizing the molten globule of alpha-lactalbumin has been prepared. The first peptide consists of residues 20 through 36 of human alpha-lactalbumin and includes the entire B-helix. This peptide is unstructured in solution as judged by CD. The second peptide is derived from residues 101 through 120 and contains both the D and 310 helices. When this peptide is crosslinked via the native 28 to 111 disulfide to the B-helix peptide, a dramatic increase in helicity is observed. The crosslinked peptide is monomeric, as judged by analytical ultracentrifugation. The peptide binds 1-anilinonaphthalene-8-sulphonate (ANS) and the fluorescence emission maximum of the construct is consistent with partial solvent exposure of the tryptophan residues. The peptide corresponding to residues 101 to 120 adopts significant non-random structure in aqueous solution at low pH. Two hydrophobic clusters, one involving residues 101 through 104 and the other residues 115 through 119 have been identified and characterized by NMR. The hydrophobic cluster formed by residues 101 through 104 is still present in a smaller peptide containing only residues 101 to 111 of alpha-lactalbumin. The cluster also persists in 6 M urea. A non-native, pH-dependent interaction between the Y103 and H107 side-chains that was previously identified in the acid-denatured molten globule state was examined. This interaction was found to be more prevalent at low pH and may therefore be an example of a local interaction that stabilizes preferentially the acid-induced molten globule state.  相似文献   

4.
Acetylcholinesterase from Torpedo californica partially unfolds to a state with the physicochemical characteristics of a "molten globule" upon mild thermal denaturation or upon chemical modification of a single non-conserved buried cysteine residue, Cys231. The protein in this state binds tightly to liposomes. It is here shown that the rate of unfolding is greatly enhanced in the presence of unilamellar vesicles of dimyristoylphosphatidylcholine, with concomitant incorporation of the protein into the lipid bilayer. Arrhenius plots reveal that in the presence of the liposomes the energy barrier for transition from the native to the molten globule state is lowered from 145 to 47 kcal/mol. Chemical modification of Cys231 by mercuric chloride produces initially a quasinative state of Torpedo acetylcholinesterase which, at room temperature, undergoes spontaneous transition to a molten globule state with a half-life of 1-2 hr. This permitted temporal resolution of interaction of the quasi-native state with the membrane from the transition of the membrane-bound protein to the molten globule state. The data presented here suggest that either the native enzyme, or a quasi-native state with which it is in equilibrium, interacts with the liposome, which then promotes a fast transition to the membrane-bound molten globule state by lowering the energy barrier for the transition. These findings raise the possibility that the membrane itself, by lowering the energy barrier for transition to a partially unfolded state, may play an active posttranslational role in insertion and translocation of proteins in situ.  相似文献   

5.
Although it contains only 25 amino acid residues, omega-conotoxin MVIIA folds into a well-defined three-dimensional structure that is stabilized by 3 disulfide bonds. To assess the contributions of the disulfides to folding and stability, three analogues, each with one pair of disulfide-bonded Cys residues replaced with Ala, were prepared and characterized. The analogues also contained a C-terminal Gly residue that is believed to be present when the peptide folds in vivo and has been shown previously to stabilize the native structure. Circular dichroism spectra and biological assays of the analogues indicated that removing any one of the disulfides greatly destabilized the native conformation. The two disulfides in each analogue were also reduced much more rapidly than in the native form with three disulfides. When the analogues were fully reduced and allowed to form disulfides in the presence of oxidized and reduced glutathione, the native disulfides were not formed in preference to non-native disulfides, further indicating that the forms with two-native disulfides are not significantly stabilized by noncovalent interactions. However, the measured equilibrium constants for disulfide formation indicate that forming any two of the three native disulfides leads to an effective concentration of approximately 25-50 M for the two remaining thiols. The two-disulfide analogues thus appear to represent a stage of folding in which the polypeptide is constrained to a distribution of relatively compact conformations that greatly favor formation of the third disulfide and the final folded structure.  相似文献   

6.
Chemical modification with sulfhydryl reagents of the single, nonconserved cysteine residue Cys231 in each subunit of a disulfide-linked dimer of Torpedo californica acetylcholinesterase produces a partially unfolded inactive state. Another partially unfolded state can be obtained by exposure of the enzyme to 1-2 M guanidine hydrochloride. Both these states display several important features of a molten globule, but differ in their spectroscopic (CD, intrinsic fluorescence) and hydrodynamic (Stokes radii) characteristics. With reversal of chemical modification of the former state or removal of denaturant from the latter, both states retain their physiochemical characteristics. Thus, acetylcholinesterase can exist in two molten globule states, both of which are long-lived under physiologic conditions without aggregating, and without either intraconverting or reverting to the native state. Both states undergo spontaneous intramolecular thioldisulfide exchange, implying that they are flexible. As revealed by differential scanning calorimetry, the state produced by chemical modification lacks any heat capacity peak, presumably due to aggregation during scanning, whereas the state produced by guanidine hydrochloride unfolds as a single cooperative unit, thermal transition being completely reversible. Sucrose gradient centrifugation reveals that reduction of the interchain disulfide of the native acetylcholinesterase dimer converts it to monomers, whereas, after such reduction, the two subunits remain completely associated in the partially unfolded state generated by guanidine hydrochloride, and partially associated in that produced by chemical modification. It is suggested that a novel hydrophobic core, generated across the subunit interfaces, is responsible for this noncovalent association. Transition from the unfolded state generated by chemical modification to that produced by guanidine hydrochloride is observed only in the presence of the denaturant, yielding, on extrapolation to zero guanidine hydrochloride, a high free energy barrier (ca. 23.8 kcal/mol) separating these two flexible, partially unfolded states.  相似文献   

7.
The problem of a variety of denatured forms of the protein molecule under equilibrium conditions is considered. The experimental conditions are described at which the protein molecule can exist in various non-native states. The history of the discovery of a universal intermediate molten globule state and the current status of research in this field are briefly outlined. Particular emphasis is placed on the fact that the molten globule state is a thermodynamic state of the protein molecule that is separated from both the native and the completely unfolded state by "all-or-none" transitions, i.e., intramolecular analogs of the 1st-order phase transitions. It is also shown that the molten globule state is not the only intermediate state observed for a particular protein under equilibrium conditions. The main structural features of the protein molecule in various denatured conformations are described. How many molten globule states there exist? A molten globule, a precursor of the molten globule, a highly structured molten globule: are these particular conformational states or different forms of the unique intermediate state? Or different forms of the native protein molecule with different degrees of disorder? Or differently structured forms of the unfolded polypeptide chain? This review is an attempt to answer these questions.  相似文献   

8.
The molten globule, a widespread protein-folding intermediate, can attain a native-like backbone topology, even in the apparent absence of rigid side-chain packing. Nonetheless, mutagenesis studies suggest that molten globules are stabilized by some degree of side-chain packing among specific hydrophobic residues. Here we investigate the importance of hydrophobic side-chain diversity in determining the overall fold of the alpha-lactalbumin molten globule. We have replaced all of the hydrophobic amino acids in the sequence of the helical domain with a representative amino acid, leucine. Remarkably, the minimized molecule forms a molten globule that retains many structural features characteristic of a native alpha-lactalbumin fold. Thus, nonspecific hydrophobic interactions may be sufficient to determine the global fold of a protein.  相似文献   

9.
Rhodopsin contains two cysteines (Cys110 and Cys187) that are highly conserved among members of the G protein coupled receptor family and that form a disulfide bond connecting helixes 3 and 4 on the extracellular side of the protein. However, recent work on a rhodopsin mutant split in the cytoplasmic loop connecting helixes 3 and 4 has shown that the amino- and carboxy-terminal fragments of this split protein do not comigrate on nonreducing SDS-PAGE gels, suggesting that the native Cys110-Cys187 disulfide bond is not present in this mutant [Ridge et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 3204-3208; Yu et al. (1995) Biochemistry 34, 14963-14969]. We show here that the inability to observe the disulfide bond on SDS gels is the result of a disulfide bond exchange reaction which occurs when this split rhodopsin is denatured in preparation for SDS-PAGE. Cys185 reacts with the native disulfide, displacing Cys110 and forming a new disulfide with Cys187. If the sulfhydryl-specific reagent N-ethylmaleimide is included in the sample during preparation for electrophoresis or if Cys185 is changed to Ser, the two fragments do comigrate with full-length rhodopsin on SDS gels and, therefore, are connected by the native Cys110-Cys187 disulfide bond. In related experiments, we find no evidence that the Cys110-Cys187 disulfide bond is broken upon formation of the active intermediate metarhodopsin II.  相似文献   

10.
Using recombinant variants of BPTI, we have determined the rate constants corresponding to formation of each of the fifteen possible disulfide bonds in BPTI, starting from the reduced, unfolded protein. The 14-38 disulfide forms faster than any of the other 14 possible disulfides. This faster rate results from significantly higher intrinsic chemical reactivities of Cys-14 and Cys-38, in addition to local structure in the reduced protein that facilitates formation of the 14-38 disulfide bond. This disulfide bond is found in native BPTI. Our results suggest that a significant flux of folding BPTI molecules proceed through the one-disulfide intermediate with the 14-38 disulfide bond, denoted [14-38], that has recently been detected on the BPTI folding pathway. In addition to providing a detailed picture of the early events in the folding of BPTI, our results address quantitatively the effect of local structure in the unfolded state on folding kinetics.  相似文献   

11.
The interaction between von Willebrand factor (vWF) A1 domain and platelet glycoprotein Ib alpha occurs in the presence of high shear stress or when vWF becomes immobilized onto a surface but not appreciably in the normal circulation. To investigate the structural properties regulating A1 domain function, we have used recombinant fragments prepared either in cyclic form with oxidized Cys509-Cys695 disulfide bond or reduced and alkylated. Interaction with glycoprotein Ibalpha was assessed by testing inhibition of monoclonal antibody LJ-Ib1 binding to platelets and inhibition of shear-induced platelet aggregation mediated by native vWF. Fragments exposed to pH between 2.5 and 3.5 adopted the molten globule conformation with loosened tertiary structure intermediate between native and completely unordered state. Maximal receptor binding activity was observed when fragments kept at acidic pH, particularly after reduction of the Cys509-Cys695 disulfide bond, were subjected to quick refolding by rapid pH increase. In contrast, slow refolding by incremental pH change over several hours resulted in at least 20-fold lower activity. A specific single point mutation (I546V) resulted in enhanced receptor binding, whereas another mutation (S561G) caused markedly reduced binding. These results provide experimental evidence that conformational transitions can modulate function of the vWF A1 domain in solution.  相似文献   

12.
The crucial step of folding of recombinant proteins presents serious challenges to obtaining the native structure. This problem is exemplified by insulin-like growth factor (IGF)-I which when refolded in vitro produces the native three-disulfide structure, an alternative structure with mispaired disulfide bonds and other isomeric forms. To investigate this phenomenon we have examined the refolding properties of an analog of IGF-I which contains a 13-amino acid N-terminal extension and a charge mutation at position 3 (Long-[Arg3]IGF-I). Unlike IGF-I, which yields 45% of the native structure and 24% of the alternative structure when refolded in vitro, Long-[Arg3]IGF-I yields 85% and 10% of these respective forms. To investigate the interactions that affect the refolding of Long-[Arg3]IGF-I and IGF-I, we acid-trapped folding intermediates and products for inclusion in a kinetic analysis of refolding. In addition to non-native intermediates, three native-like intermediates were identified, that appear to have a major role in the in vitro refolding pathway of Long-[Arg3]IGF-I; a single-disulfide Cys18-Cys61 intermediate, an intermediate with Cys18-Cys61 and Cys6-Cys48 disulfide bonds and another with Cys18-Cys61 and Cys47-Cys52 disulfide bonds. Furthermore, from our kinetic analysis we propose that the Cys18-Cys61, Cys6-Cys48 intermediate forms the native structure, not by the direct formation of the last (Cys47-Cys52) disulfide bond, but by rearrangement via the Cys18-Cys61 intermediate and a productive Cys18-Cys61, Cys47-Cys52 intermediate. In this pathway, the last disulfide bond to form involves Cys6 and Cys48. Finally, we apply this pathway to IGF-I and conclude that the divergence in the in vitro folding pathway of IGF-I is caused by non-native interactions involving Glu3 that stabilize the alternative structure.  相似文献   

13.
Molecular dynamics simulations of alpha-lactalbumin were performed under conditions of neutral pH and low pH in order to study the acid-induced molten globule state. Through the use of experimental techniques such as NMR and CD spectroscopy, molten globules have been characterized as being compact intermediates with secondary structure similar to that of the native protein but with tertiary structure that is disordered. The detailed structure of the molten globule state is unknown, however. Through the use of computer simulations we can study the structural changes which occur upon lowering pH. The simulations presented here differ from previous unfolding simulations in two important ways: the electrostatic interactions are treated more accurately than ever before, and artificially high temperatures are not used to force the protein to unfold. Simulations of 880 psec each were run at pH 7 (control simulation) and pH 2. We concentrate on the interesting changes in the tertiary interactions within the protein with lowering of pH. In particular, there is a loss of native tertiary contacts in the beta domain and interdomain region, and a large decrease in interdomain hydrogen bonds.  相似文献   

14.
To assess the role of the [65-72] disulfide bond in the oxidative folding of RNase A, use has been made of [C65S, C72S], a three-disulfide-containing mutant of RNase A which regenerates from its two-disulfide precursor in an oxidation and conformational folding-coupled rate-determining step. The distribution of disulfide bonds in the one-disulfide-containing ensemble of this mutant has been characterized. In general, the disulfide-bond distribution in its 1S ensemble agrees relatively well with the corresponding distribution in wt-RNase A and with distributions based on calculations of loop entropy, except for the absence of the [65-72] disulfide bond. There is no bias (over the entropic influence) for the three native disulfide bonds, [26-84], [40-95], and [58-110]. Previous oxidative folding results for wt-RNase A indicated the predominance of the des [40-95] intermediate over des [65-72] after the rate-determining step in the regeneration process. Considering that there is no preferential distribution of disulfides in the 1S ensemble of [C65S, C72S], in contrast to the preferential population of the [65-72] disulfide bond in wt-RNase A, these results indicate a critical role for the [65-72] disulfide bond in the regeneration of wt-RNase A. Furthermore, analysis of the disulfide distribution of the 1S intermediates of [C65S, C72S] compared to that of wt-RNase A lends support for a physicochemical basis for the previously observed slow folding rate of this mutant, compared to its analogue (des [65-72]) of wt-RNase A.  相似文献   

15.
The complete amino acid sequence and location of the disulfide bonds of two-chain botrocetin, which promotes platelet agglutination in the presence of von Willebrand factor, from venom of the snake Bothrops jararaca are presented. Sequences of the alpha and beta subunits were determined by analysis of peptides generated by digestion of the S-pyridylethylated protein with Achromobacter protease I or alpha-chymotrypsin and by chemical cleavage with cyanogen bromide or 2-(2'-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine. Two-chain botrocetin is a heterodimer composed of the alpha subunit (consisting of 133 amino acid residues) and the beta subunit (consisting of 125 amino acid residues) held together by a disulfide bond. Seven disulfide bonds link half-cystine residues 2 to 13, 30 to 128, and 103 to 120 of the alpha subunit; 2 to 13, 30 to 121, and 98 to 113 of the beta subunit; and 80 of the alpha subunit to 75 of the beta subunit. In terms of amino acid sequence and disulfide bond location, two-chain botrocetin is homologous to echinoidin (a sea urchin lectin) and other C-type (Ca(2+)-dependent) lectins.  相似文献   

16.
DsbA is a periplasmic protein of Escherichia coli that appears to be the immediate donor of disulfide bonds to proteins that are secreted. Its active site contains one accessible and one buried cysteine residue, Cys30 and Cys33, respectively, which can form a very unstable disulfide bond between them that is 10(3)-fold more reactive toward thiol groups than normal. The two cysteine residues have normal properties when in a short peptide. In DsbA, the Cys30 thiol group is shown to be reactive toward alkylating reagents down to pH 4 and to be fully ionized, on the basis of the UV absorbance of the thiolate anion at 240 nm. Its reactivity is altered by another, unknown group on the reduced protein titrating with a pKa of about 6.7. The other cysteine residue is buried and unreactive and has a high pKa value. The ionization properties of the DsbA thiol groups can explain, at least partly, the high reactivity of its disulfide bonds and thiol groups at both neutral and acidic pH values.  相似文献   

17.
The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hydrogen peroxide. Amino acid sequence analysis of the disulfide-containing tryptic peptide demonstrated the presence of two identical disulfide bonds per dimer of oxidized AhpC located between Cys46 on one subunit and Cys165 on the other. Mutant AhpC proteins containing only one (C46S and C165S) or no (C46,165S) cysteine residues were purified and shown by circular dichroism studies to exhibit no major disruptions in secondary structure. In NADH-dependent peroxidase assays in the presence of AhpF, the C165S mutant was fully active in comparison with wild-type AhpC, while C46S and C46,165S displayed no peroxidatic activity. In addition, only C165S was oxidized by 1 equiv of hydrogen peroxide, giving a species that was stoichiometrically reducible by NADH in the presence of a catalytic amount of AhpF. Oxidized C165S also reacted rapidly with a stoichiometric amount of the thiol-containing reagent 2-nitro-5-thiobenzoic acid to generate a mixed disulfide, and was susceptible to inactivation by hydrogen peroxide, strongly supporting its identification as a cysteine sulfenic acid (Cys46-SOH). The lack of reactivity of the C46S mutant toward peroxides was not a result of inaccessibility of the remaining thiol as demonstrated by its modification with 5, 5'-dithiobis(2-nitrobenzoic acid), but could be due to the lack of a proximal active-site base which would support catalysis through proton donation to the poor RO- leaving group. Our results clearly identify Cys46 as the peroxidatic center of AhpC and Cys165 as an important residue for preserving the activity of wild-type AhpC by reacting with the nascent sulfenic acid of the oxidized protein (Cys46-SOH) to generate a stable disulfide bond, thus preventing further oxidation of Cys46-SOH by substrate.  相似文献   

18.
The disulfide bridges in recombinant human macrophage colony stimulating factor (rhM-CSF), a 49-kDa homodimeric protein, were assigned. The 18 cysteines in the dimer form three intermolecular and two sets of three intramolecular disulfide bonds. The intermolecular disulfide bridges hold the dimer together and form symmetric bonds in which Cys31 and Cys157/Cys159 from one monomer unit are linked to the corresponding cysteines of the second monomer. The intramolecular disulfide bonds are located between Cys7-Cys90, Cys48-Cys139, and Cys102-Cys146, respectively. The resistance of native M-CSF to proteolytic cleavage was overcome by an initial chemical cleavage reaction using BrCN. The close proximity of four cysteines (Cys139, Cys146, Cys157, and Cys159) results in a tight core complex that makes the protein undigestable for most proteases. Digestion using endoprotease Asp-N resulted in cleavage at Asp156 near the C-terminal end of this region, thereby opening the complex structure.  相似文献   

19.
The volume change for the transition from the native state of horse heart apomyoglobin to a pressure-induced intermediate with fluorescence properties similar to those of the well-established molten globule or I form was measured to be -70 ml/mol. Complete unfolding of the protein by pressure at pH 4.2 revealed an upper limit for the unfolding of the intermediate of -61 ml/mol. At 0.3 M guanidine hydrochloride, the entire transition from native to molten globule to unfolded state was observed in the available pressure range below 2.5 kbar. The volume change for the N-->I transition is relatively large and does not correlate well with the changes in relative hydration for these transitions derived from measurements of the changes in heat capacity, consistent with the previously observed lack of correlation between the m-value for denaturant-induced transitions and the measured volume change of unfolding for cooperativity mutants of staphylococcal nuclease (Frye et al. 1996. Biochemistry. 35:10234-10239). Our results support the hypothesis that the volume change associated with the hydration of protein surface upon unfolding may involve both positive and negative underlying contributions that effectively cancel, and that the measured volume changes for protein structural transitions arise from another source, perhaps the elimination of void volume due to packing defects in the structured chains.  相似文献   

20.
The kinetics of the guanidine hydrochloride-induced unfolding and refolding of bovine beta-lactoglobulin, a predominantly beta-sheet protein in the native state, have been studied by stopped-flow circular dichroism and absorption measurements at pH 3.2 and 4.5 degrees C. The refolding reaction was a complex process composed of different kinetic phases, while the unfolding was a single-phase reaction. Most notably, a burst-phase intermediate of refolding, which was formed during the dead time of stopped-flow measurements (approximately 18 ms), showed more intense ellipticity signals in the peptide region below 240 nm than the native state, yielding overshoot behavior in the refolding curves. We have investigated the spectral properties and structural stability of the burst-phase intermediate and also the structural properties in the unfolded state in 4.0 M guanidine hydrochloride of the protein and its disulfide-cleaved derivative. The main conclusions are: (1) the more intense ellipticity of the intermediate in the peptide region arises from formation of non-native alpha-helical structure in the intermediate, apparently suggesting that the folding of beta-lactoglobulin is not represented by a simple sequential mechanism. (2) The burst-phase intermediate has, however, a number of properties in common with the folding intermediates or with the molten globule states of other globular proteins whose folding reactions are known to be represented by the sequential model. These properties include: the presence of the secondary structure without the specific tertiary structure; formation of a hydrophobic core; broad unfolding transition of the intermediate; and rapidity of formation of the intermediate. The burst-phase intermediate of beta-lactoglobulin is thus classified as the same species as the molten globule state. (3) The circular dichroism spectra of beta-lactoglobulin and its disulfide-cleaved derivative in 4.0 M guanidine hydrochloride suggests the presence of the residual beta-structure in the unfolded state and the stabilization of the beta-structure by disulfide bonds. Thus; if this residual beta-structure is part of the native beta-structure and forms a folding initiation site, the folding reaction of beta-lactoglobulin may not necessarily be inconsistent with the sequential model. The non-native alpha-helices in the burst-phase intermediate may be formed in an immature part of the protein molecule because of the local alpha-helical propensity in this part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号