首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shot peening is widely used to improve the fatigue properties of components and structures. Residual stresses, surface roughness, and work hardening are the main beneficial effects induced in the surface layer from shot peening, which depend on the correct choice of the peening parameters. In this investigation, experiments were designed using the full factorial design of experiment (DOE) technique and an air blast type of shot peening machine. Effects of process parameters such as pressure, shot size, stand-off distance, and exposure time on surface microhardness for AISI 1045 and 316L materials were investigated. An ANOVA was carried out to identify the significant peening parameters. In the case of 316L material, the maximum surface hardness was found to be in the range of 450–824 Hv, whereas it was found to be in the range of 314–360 Hv for AISI 1045. A critical assessment was made so as to understand the variation of microhardness in the direction of peening. Empirical equations between the peening parameters and the surface microhardness for both materials were developed, which are useful in predicting the surface microhardness. It is believed that this technique could prove beneficial in industries for reduction of performance variation and cost and to increase productivity.  相似文献   

2.
In this work, improvement in fretting fatigue life of AL7075-T6 has been investigated by titanium surface coating using ion-beam-enhanced deposition (IBED) technique and shot peening. From the experiments, the following conclusions were derived: (i) Shot peening increased the fretting fatigue life up to 350%. (ii) Titanium coating increased the fatigue life up to 100% with respect to virgin specimens for low working stresses, while it reduced the fatigue life at higher working stresses significantly. (iii) Titanium coating+shot peening increased the fatigue life up to 130% with respect to the virgin specimens for low working stresses, while it reduced the fatigue life at higher working stresses significantly. The highest and the lowest increase in coefficient of friction are obtained for virgin and shot-peened+titanium-coated specimens, respectively. IBED surface-modification technique is not successful in reducing fretting fatigue, except at low stresses.  相似文献   

3.
对不锈钢材料1Cr11Ni2W2MoV进行了激光冲击强化和喷丸强化后表面粗糙度和残余应力测试分析,与喷丸相比,激光冲击强化对试件表面形貌和表面粗糙度的影响更小,产生的残余压应力更大。对光滑试件和2种强化后试件的振动疲劳对比试验表明,激光冲击强化能显著提高不锈钢材料振动疲劳寿命,是喷丸的2倍以上。  相似文献   

4.
To investigate the influence of shot peening on the surface durability of powder-forged rollers, the case-hardened powder-forged rollers with a forging density of 7.5 g/cm3 treated by the single shot peening and the double shot peening were fatigue-tested under a sliding-rolling contact condition. The surface roughness, the surface hardness and the surface compressive residual stress of the rollers were increased by the shot peening. In addition, the pores near the roller surface were deformed by the shot peening. The failure mode of all the test rollers was spalling due to subsurface cracking. The fatigue lives of all the test rollers were improved by the shot peening, and that of the test roller S08, which was shot-peened with the hardest steel shots in this experimental range, was especially improved. The surface durability of the test roller S08 was also most improved by the shot peening. Cracks became difficult to occur and propagate under the roller surface since the pores near the roller surface were deformed by the stronger shot peening. In this study, double shot peening, which generally restrains the increase in surface roughness, was not particularly effective for the improvement in the surface durability of the powder-forged rollers, because the influence of tangential force on fatigue was not always great in a case of subsurface cracking.  相似文献   

5.
弹丸束喷丸有限元模型数值模拟及试验研究   总被引:16,自引:3,他引:16  
喷丸工艺是一种有效提高工件表面疲劳抗力的表面处理工艺,被广泛应用在航空、汽车、动力机械等重要领域。喷丸数值模拟是制订喷丸工艺方案、评估喷丸后工件表面疲劳抗力的主要理论工具。目前,现有的喷丸数值模型主要有单弹丸模型、阵列弹丸模型等形式,在这些模型中,弹丸的撞击位置是固定的,忽略了真实的喷丸过程中弹丸位置的随机性。采用有限元计算软件ABAQUS提供的python语言开发一种弹丸在空间位置随机分布的弹丸束喷丸模型,在此模型基础上研究喷丸工艺参数与残余应力间的分布规律,进一步讨论喷丸工艺对工件表面粗糙度的影响,模拟喷丸强度的饱和过程,并通过Q235钢喷丸试验对弹丸束喷丸模型进行验证,为喷丸工艺的精确控制提供了科学依据和理论基础。  相似文献   

6.
喷丸强化因素对钛合金固体粒子冲蚀抗力的影响   总被引:1,自引:0,他引:1  
探讨了喷丸强化(SP)因素(残余压应力引入、表面粗糙度增大和表面加工硬化等)对Ti6Al4V钛合金固体粒子冲蚀(SPE)行为的影响和作用机制,为充分发挥SP改进航空发动机零部件服役性能的潜力提供依据。结果表明:Ti6Al4V合金表面直接喷丸处理,其SPE抗力无明显改变;SP处理后进行表面抛光,Ti6Al4V合金SPE抗力明显增加。SP造成的表面粗糙度增大导致了钛合金在大小冲击攻角下的SPE抗力的下降;SP引入的表面残余压应力对提高钛合金在90°大攻角下的SPE抗力起了重要作用,原因是SP残余压应力增加了裂纹闭合力和抑制了疲劳裂纹早期扩展;SP引起的表面加工硬化作用对提高钛合金在30°小攻角下的SPE抗力有重要贡献,这归于加工硬化提高了材料表面在小攻角下的微犁削抗力。  相似文献   

7.
Fretting fatigue life of materials can be improved by surface treatment such as shot peening. In this investigation, the effect of multiple re-shot peening on the fretting fatigue behavior of A17075-T6 is studied. After each re-shot peening, the specimen was subjected to 60% of its expected fretting fatigue life. The process of re-shot peening continued until the effect of any further re-shot peening became insignificant. The results showed an increase of 60–70% for the first re-shot peening depending on stress level. The increase, however, was sharply reduced for the next re-shot peenings such that for the third re-shot peening the increase dropped below 10%, which was not as significant. On the whole, the fretting fatigue life increased by 390–410% with respect to the life of virgin specimens depending on the stress level. The results indicated that fretting fatigue life improvement using the 60% of prior life consumption was considerably lower than that obtained for the 80% of expected life as used in previous investigations. An artificial neural network can be employed for estimation of fretting fatigue life at the stress levels not considered in the investigation.  相似文献   

8.
Shot peening is an important surface enhancement process, which helps in assuring satisfactory fatigue life and reliability of the automotive, aerospace and marine components. One of the most important factors affecting shot peening performance is the type of shot peening machine. This paper presents an innovative design of a laboratory-based air blast shot peening machine. This machine has a vertical nozzle suction system to take the advantage of gravity feed as well as the feed created by suction of the pressurized air. Special attention was paid to the design of the nozzle and the mixing chamber so as to obtain adequate suction of shots. The performance of the machine was evaluated by carrying out various shot peening tests on AISI 1045 steel specimens. The tests included microscopic examination of coverage with ×10 magnification lens, fatigue and wear resistance. The wear resistance of the peened AISI 1045 material increased by 3.5 times the unpeened one. The fatigue tests showed improvement in fatigue life of the workpiece up to about four times. Besides, there was an increase in yield and torsional strength of the workpiece by about 1.5 times.  相似文献   

9.
A rotary bending fatigue test was carried out with two kinds of materials, S43C and S50C, using the front engine and front driveshaft (F.F. shaft) of the vehicle. The specimens were heat-treated using the high frequency induction method (about 1 mm depth and HRC56∼60) and the test environment temperatures were -30 °C (-22 °F), +25 °C (+77 °F), and +80 °C (+176 °F) in order to determine the influence of the heat treatment and the temperatures. The fatigue life increased on the order of +80 °C, +25 °C, and -30 °C regardless of heat treatment. In comparison of the fatigue lives with the basis of the tested result at +25 °C, the fatigue lives of non-heated specimens decreased about 35%, but that of heat-treated specimens decreased by only about 5% at +80 °C, more than at +25 °C. And fatigue life of non-heated and heat-treated specimens were about 110% and 120% higher at -30 °C than that of +25 °C. The initiation of surface microcracks was observed at 0.2 fatigue life ratio in as-received S43C and S50C, but the average crack length in S50C was about 14% longer than that of S43C at the same fatigue life ratio.  相似文献   

10.
作为机械表面强化技术之一,喷丸强化使工件表层发生形变硬化,引入较高的残余压应力,减少了疲劳应力作用下微裂纹的萌生并抑制其扩展,从而显著提高零件的抗疲劳断裂和抗应力腐蚀开裂的能力。基于喷丸残余应力解析计算模型,从余弦函数模型、接触应力模型和球腔膨胀模型三个方面介绍喷丸强化残余应力的产生,进而对喷丸残余应力的仿真预测及影响规律进行论述。为了提高试件疲劳强度而引入的残余压应力会带来影响形位精度的变形,基于此阐述了喷丸残余应力对疲劳性能的影响及其在疲劳过程中的演化,同时论述了喷丸残余应力变形预测及控制的研究现状,最后对喷丸残余应力未来的研究内容与发展方向进行展望。  相似文献   

11.
The effects of shot peening pressure on the mechanical and tribological properties of shot-peened SAE 1070 steel strips were systematically investigated. The surface hardness of the shot-peened steel strips significantly increased with increased shot peening pressure due to the promoted cold work-hardening effect. The tribological results showed that the increased surface roughness of the shot-peened steel strips associated with increased shot peening pressure resulted in their increased friction by enhancing mechanical interlocking between two rubbing surfaces. The wear of the shot-peened steel strips decreased with increased shot peening pressure via their increased surface hardness. However, the shot-peened steel strips at shot peening pressures less than 345 kPa did not exhibit better wear resistance than the as-received steel strip, indicating that a certain intensity of shot peening was required to improve the wear resistance of the shot-peened steel strips. It could be concluded that the mechanical and tribological properties of the shot-peened steel strips were significantly influenced by the shot peening pressure.  相似文献   

12.
喷丸处理对汽车变速箱齿轮疲劳强度影响的研究   总被引:4,自引:0,他引:4  
分析了汽车变速箱齿轮经喷丸处理后对疲劳强度的影响,通过喷丸强度试验,表面覆盖率试验确定了合理的喷丸处理工艺,通过疲劳试验,得出了喷丸处理对弯曲疲劳强度和接触疲劳强度的影响程度。结果表明:喷丸处理能极大地提高齿轮的疲劳强度,从而提高齿轮的使用寿命。  相似文献   

13.
Soyama  Hitoshi  Macodiyo  Dan O.  Mall  Shankar 《Tribology Letters》2004,17(3):501-504
Cavitation shotless peening (CSP) method, where impacts are generated by a submerged cavitating jet (without shots), was used to introduce compressive residual stress in titanium alloy, Ti-6Al-4V for the purpose of enhancing the conventional fatigue and fretting fatigue life and strength. This method provided higher compressive stress at surface as well as up to a depth of 40 m from the surface than that with the shot peening method. Further, the surface treated by CSP was considerably less rough compared to that by the shot peening method, which is a highly desirable feature to improve the fretting fatigue performance.  相似文献   

14.
The effect of shot peening on rolling contact fatigue (RCF) and lubricant film thickness within non-conformal rolling/sliding contacts operated under mixed lubrication conditions was observed in this study. Rolling contact fatigue tests and film thickness measurements were carried out using specimens with modified surface topography by shot peening process using glass beads having diameter between 0.07 and 0.11 mm. It has been shown that the effect of shot peening on RCF has no positive effect even if shot peened surface of the roller exhibited somewhat higher hardness in contrast to the grounded surface. The reduction of RCF may be caused due to asperities interactions because after shot peening the surface roughness of the roller was increased. Film thickness measurements confirmed that the contact is realized actually only between asperity peaks of shot peened ball and smooth disc.Conversely, no negative effect on RCF was observed when the shot peened surface of the roller was polished. The polish of asperity peaks causes the creation of lands and micro-cavities, which may be employed as lubricant micro-reservoirs. From film thickness measurements it has been observed that lubricant emitted by shallow micro-cavities can provide the local increase in lubrication film thickness, which thereby reduces asperities interactions. Similar results were obtained for start-up conditions where the squeeze lubricant enlarges film thickness and reduces surface interactions.From the obtained results, it can be suggested that properly designed surface topography modification could help to increase the efficiency of lubrication films leading to the enhancement of contact fatigue life of non-conformal mixed lubricated rolling/sliding contacts.  相似文献   

15.
Shot peening is an effective and economical technique for improving the fatigue strength of metallic components by inducing compressive residual stress and hardening the layer near the surface. The effect is generally evaluated by main two parameters: coverage and peening intensity. However, the valuable coverage for improving the fatigue strength depends on the shape of the target material. In this study, the effect of coverage on fatigue limit in round bar of annealed medium carbon steel was experimentally studied. The fatigue limits for shot peened round bar specimens with 140–2300% coverage increased 14–25% by comparing those for non-peened round bar specimens. The valuable range of coverage was 280–60% in the used material and shot peening condition for improving the fatigue limit in short time. The result indicates that the valuable coverage of the round bar material is higher than full coverage to improve the fatigue limit of the material due to the effect of incident angle on round bar, even though the degree depends on the materials and shot peening conditions.  相似文献   

16.
The applications of functional ceramics are significantly limited by the brittleness and low reliability. Recent studies have shown that compressive residual stress can be created in ceramics by shot peening, which improves the contact strength and fatigue of ceramic components. However, the formation mechanism of residuals stress in shot peening is yet to understand. In this study, a pressure-dependent plasticity model has been incorporated into a finite element simulation model of shot peening to understand the process mechanism underpinning the residual stress formation. Since shot velocity is the key process parameter to dominate the impact energy which determines the deformation state of the peened surface and the resultant residual stress, a new kinematic model of shots has also been developed by incorporating air drag and travel distance inside and outside the peening nozzle. The results have shown that the shot velocity model can be used to predict shot velocity. The experiment-based model may help understand the process mechanism underpinning the residual stress formation.  相似文献   

17.
Brass alloy is widely used because of some attractive properties such as high electrical and thermal conductivity. But its fatigue performance after surface treatment is not very well explored in literature. Thus, in the present work, particular emphasis was given to the influence of surface treatment by shot peening on the fatigue life of brass alloy, throughout surface roughness and microstructural evolution. Fatigue tests were performed on unpeened, peened and peened then polished specimens. Various times of surface hardening treatment as 30, 60 and 120 min were considered. Experimental results reveal that the fatigue life of peened brass alloy decrease for all studied hardening treatment conditions. Surface roughness and microstructural properties showed large sensitivity to the shot peening process of brass alloy.  相似文献   

18.
采用GDL-1型贝氏体钢作为螺纹钎杆的材质,加工成模拟钎杆螺纹杆进行拉压疲劳行为的测试。结果表明:经过表面喷丸处理的螺纹杆的疲劳寿命明显高于未进行表面喷丸处理的螺纹杆,经空冷250℃回火疲劳极限稍低于空冷300℃回火。  相似文献   

19.
喷丸强化处理工艺可以显著提高金属材料的抗疲劳和抗应力腐蚀等性能,这与喷丸后在金属表面层形成的残余应力场紧密相关,因此对喷丸残余应力的大小及分布进行预测具有重要意义.对近年国内外喷丸残余应力场的有限元模拟进行评述,总结出6种典型的残余应力分析模型,分别是二维轴对称模型、四对称面模型、三对称面模型、双对称面模型、单对称面模...  相似文献   

20.
为了考察和对比喷丸(SP)和激光喷丸(LSP)2种表面强化技术对金属零件的强化效果,以30CrMnSiNi2A钢为试样,进行喷丸和激光喷丸强化处理试验。试验结果显示,2种强化试样的残余压应力和硬度都有较大的提高。分别测定了喷丸强化和激光喷丸强化试样在同一应力水平下的疲劳寿命,并运用扫描电镜分析了两者的疲劳断口。试验结果表明,激光喷丸强化试样中值疲劳寿命是喷丸强化试样的1.11~2.75倍,激光喷丸强化比喷丸强化在提高金属零件表面性能方面的效果更佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号