首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The etiology of stroke in sickle cell disease is unclear, but may involve abnormal red blood cell (RBC) adhesion to the vascular endothelium and altered vasomotor tone regulation. Therefore, we examined both the adhesion of sickle (SS)-RBCs to cerebral microvessels and the effect of SS-RBCs on cerebral blood flow when the nitric oxide (NO) pathway was inhibited. The effect of SS-RBCs was studied in the rat cerebral microcirculation using either a cranial window for direct visualization of infused RBCs or laser Doppler flowmetry (LDF) to measure RBC flow. When fluorescently labeled human RBCs were infused into rats, SS-RBCs had increased adhesion to rat cerebral microvessels compared with control AA-RBCs (P = .01). Next, washed SS-RBCs or AA-RBCs were infused into rats prepared with LDF probes after pretreatment (40 mg/kg intravenously) with the NO synthase inhibitor, N-omega-nitro-L-arginine methyl ester (L-NAME), or the control isomer, D-NAME. In 9 rats treated with systemic L-NAME and SS-RBCs, 5 of 9 experienced a significant decrease in LDF and died within 30 minutes after the RBC infusion (P = .0012). In contrast, all control groups completed the experiment with stable LDF and hemodynamics. Four rats received a localized superfusion of L-NAME (1 mmol/L) through the cranial window followed by infusion of SS-RBCs. Total cessation of flow in all observed cerebral microvessels occurred in 3 of 4 rats within 15 minutes after infusion of SS-RBCs. We conclude that the NO pathway is critical in maintaining cerebral blood flow in the presence of SS-RBCs in this rat model. In addition, the enhanced adhesion of SS-RBCs to rat brain microvessels may contribute to cerebral vaso-occlusion either directly, by disrupting blood flow, or indirectly, by disturbing the vascular endothelium.  相似文献   

2.
OBJECTIVES: a) To determine whether isovolemic exchange transfusion with cell-free, bovine fumaryl beta beta-crosslinked hemoglobin results in a different pattern of regional blood flow distribution than transfusion with a poor oxygen-carrying, colloidal solution. b) Because of potential nitric oxide scavenging by plasma-based hemoglobin, to determine whether blood flow differences are reduced after nitric oxide synthase inhibition. DESIGN: A prospective, randomized design with repeated blood flow measurements within groups. SETTING: Experimental physiology laboratory in a university medical center. SUBJECTS: Pentobarbital-anesthetized female cats. INTERVENTIONS: Three groups of eight cats were studied: a) a control group with no transfusion (hematocrit of 32%); b) an anemia group in which exchange transfusion with an albumin-containing solution reduced hematocrit to 18% over a 40- to 50-min period; and c) a group in which cell-free hemoglobin was exchanged transfused to reduce hematocrit to 18%, without a proportional reduction in oxygen-carrying capacity. Bovine hemoglobin was covalently crosslinked intramolecularly between the 81-lysine residues on the beta-subunits to stabilize the tetramer. Regional blood flow was measured by the radiolabeled microsphere technique before transfusion and at 10, 100, and 180 mins from the start of transfusion. At 190 mins, N omega-nitro-L-arginine methyl ester (L-NAME; 10mg/kg) was infused to inhibit nitric oxide synthase and blood flow was measured 30 mins later. MEASUREMENTS AND MAIN RESULTS: Mean arterial pressure was unchanged in the control and albumin-transfused groups. However, mean arterial pressure increased rapidly in the hemoglobin-transfused group. With hemoglobin transfusion, there were marked reductions in blood flow to the intestines, kidneys and adrenal glands. Administration of L-NAME after hemoglobin transfusion failed to increase arterial pressure or cause further reductions in intestinal, renal, or adrenal blood flow. Administration of L-NAME to the control and albumin-transfused groups increased arterial pressure and reduced intestinal, renal, and adrenal blood flows to values attained with hemoglobin transfusion. In contrast, in skeletal muscle and left ventricle, blood flow rates increased in the albumin-transfused group and were greater than those values found in the control group and hemoglobin-transfused group. The greater flow in the albumin-transfused group persisted after L-NAME administration. There was no difference in renal sodium, potassium, or osmolar excretion, or in urine flow between groups. CONCLUSIONS: Transfusion with cell-free, bovine crosslinked hemoglobin in cats can selective reductions in blood flow in the intestines, kidneys, and adrenal glands without evidence of renal dysfunction by a mechanism consistent with nitric oxide scavenging. In skeletal and cardiac muscle, the increase in blood flow persisted after nitric oxide inhibition in the albumin group relative to the hemoglobin-transfused group at equivalent hematocrit values. This finding is consistent with compensatory vasoconstriction with hemoglobin transfusion due to improved oxygenation by this oxygen carrier.  相似文献   

3.
BACKGROUND: It has been postulated that nitric oxide (NO) is a neurotransmitter involved in consciousness, analgesia, and anesthesia. Halothane has been shown to attenuate NO-mediated cyclic guanosine monophosphate accumulation in neurons, and a variety of anesthetic agents attenuate endothelium-mediated vasodilation, suggesting an interaction of anesthetic agents and the NO-cyclic guanosine monophosphate pathway. However, the exact site of anesthetic inhibitory action in this multistep pathway is unclear. The current study examines effects of volatile and intravenous anesthetic agents on the enzyme nitric oxide synthase (NOS) in brain. METHODS: NOS activity was determined by in vitro conversion of [14C]arginine to [14C]citrulline. Wistar rats were decapitated and cerebellum quickly harvested and homogenized. Brain extracts were then examined for NOS activity in the absence and presence of the volatile anesthetics halothane and isoflurane, and the intravenous agents fentanyl, midazolam, ketamine, and pentobarbital. Dose-response curves of NOS activity versus anesthetic concentration were constructed. Effects of anesthetics on NOS activity were evaluated by analysis of variance. RESULTS: Control activities were 57.5 +/- 4.5 pmol.mg protein-1.min-1 in the volatile anesthetic experiments and 51.5 +/- 6.5 pmol.mg protein-1.min-1 in the intravenous anesthetic experiments. NOS activity was not affected by ketamine (< or = 1 x 10(-4) M), pentobarbital (< or = 5 x 10(-5) M), fentanyl (< or = 1 x 10(-5) M), and midazolam (< or = 1 x 10(-5) M). Halothane decreased NOS activity to 36.7 +/- 2.5 (64% of control, P < 0.01 from control), 23.8 +/- 4.3 (41%, P < 0.01 from control and < 0.05 from 0.5% halothane), 25.2 +/- 3.8 (44%, P < 0.01 from control and < 0.05 from 0.5% halothane), and 19.7 +/- 2.8 (34%, P < 0.01 from control and < 0.05 from 0.5% halothane) pmol.mg protein-1.min-1 at 0.5, 1.0, 2.0, and 3.0% vapor. Isoflurane decreased NOS activity to 48.9 +/- 6.1 (85% of control), 46.0 +/- 3.2 (80%, P < 0.05 from control), 40.3 +/- 5.1 (70%, P < 0.05 from control), and 34.2 +/- 4.0 (60%, P < 0.05 from control and 0.5% and 1.0% isoflurane) pmol.mg protein-1.min-1 at 0.5, 1.0, 1.5, 2.0% vapor, respectively. CONCLUSIONS: Volatile anesthetics inhibit brain NOS activity in an in vitro system, but the intravenous agents examined have no effect at clinically relevant concentrations. This inhibition suggests a protein-anesthetic interaction between halothane, isoflurane, and NOS. In contrast, intravenous agents appear to have no direct effect on NOS activity. Whether intravenous agents alter signal transduction or regulatory pathways that activate NOS is unknown.  相似文献   

4.
5.
Whether a rapid elevation of serum gliclazide concentration in human subjects can be achieved through an acceleration of dissolution of gliclazide from a formulation was examined. A soft gelatin capsule containing PEG 400, PEG 4000, Tween 20 and glycerin was prepared as a formulation that may accelerate dissolution of gliclazide. The in vitro dissolution of gliclazide at pH 7.2 was identical for the soft capsule and conventional tablets, Diamicron and Diberin. However, at pH 1, 2 and 4.0 the dissolution from the soft capsule was more rapid compared to the tablets. When bioavailability parameters were compared following oral administration of the soft capsule and Diamicron to 16 healthy Korean male subjects, the parameters representing the amount of adsorption (i.e. the area under the serum gliclazide concentration vs. time curve up to 24 h, AUC24, and the peak serum concentration Cmax) were not statistically different for both formulations. However, the time required to reach the peak (Tmax) was significantly shorter for the soft capsule than for the Diamicron. Our results, therefore, indicate that a rapid elevation of serum gliclazide concentration following oral administration of a formulation can be achieved by accelerating the in vitro dissolution of gliclazide from the formulation into the acidic buffers. Thus, the rate of gastrointestinal absorption of gliclazide appears to be dependent on its in vivo dissolution rate in gastric fluid. A soft capsule containing a PEG 400 suspension of gliclazide appears to be an appropriate formulation for accelerating the dissolution.  相似文献   

6.
Effects of nitric oxide (NO) synthase inhibition on blood pressure and on the course of Heymann nephritis was examined in rats. L-NG-nitroarginine-methylester (L-NAME, 10 mg/100 ml in the drinking water for 12 weeks) was used as an inhibitor of NO synthase. Urinary excretion of guanosine 3',5'-cyclic monophosphate (cGMP), a second messenger of NO, was used as an indirect estimate of NO activity. Rats were divided into the following groups: control, nephritis, L-NAME, and nephritis-L-NAME. Urinary cGMP excretion was lower in the nephritis group (p < 0.05) and in the nephritis-L-NAME group (p < 0.005) compared with controls. Plasma atrial natriuretic peptide (ANP) levels were elevated in the nephritis (p < 0.001) and in the nephritis-L-NAME groups (p < 0.05. L-NAME treatment alone did not have any effect on plasma ANP levels. Blood pressure rose progressively in all L-NAME-treated rats. Most marked albuminuria developed in the nephritis-L-NAME group. No differences in the immunohistological findings were observed between the nephritis and the nephritis-L-NAME groups. NO synthase inhibition causes hypertension and aggravates albuminuria in chronic nephritis. Moreover, nephritis itself may decrease then production of cGMP either as a consequence of blunted NO activity or, in addition, because of ANP resistance. It appears that NO synthase inhibition does not change the immunological course of Heymann nephritis but rather the increased hemodynamic load makes the course of nephritis worse.  相似文献   

7.
8.
9.
Nitric oxide (NO) is synthesized from L-arginine by a family of enzymes known as the nitric oxide synthases (NOS). We have recently shown a NOS similar to constitutive brain NOS (bNOS) and endothelial NOS (ecNOS) to be present in spermatozoa. The aim of this study is to investigate NO production by human spermatozoa and the effects of stimulation and inhibition of NOS. This was carried out using the Iso-NO, an isolated NO meter and sensor, which provides rapid, accurate and direct measurements of NO. Semen samples with normozoospermic and asthenozoospermic profiles were prepared using a direct swim-up technique. Basal concentrations of NO and stimulated NO production were measured after exposure to the calcium ionophore (A23187; 0.01-10 microM) a potent activator of constitutive NOS. NO production in human spermatozoa was significantly increased by the addition of A23187 30 seconds after stimulation. Furthermore, this response was greatly diminished by pre-incubating the samples with competitive inhibitors of L-arginine, the substrate for NOS, before treatment with calcium ionophore. In the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-nitro-L-arginine (L-NA) or N(G)-methyl-L-arginine (L-NMMA; all at 10 microM), NO production was inhibited with a rank order of potency L-NAME > L-NMMA > L-NA which is in accordance with the inhibition of an endothelial type of constitutive NOS.  相似文献   

10.
A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19-amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of approximately 130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.  相似文献   

11.
We addressed the hypothesis that administration of nitric oxide synthase inhibitor, NG -nitro-L-arginine methyl ester (L-NAME) does not result in a sustained suppression of nitric oxide (NO) synthesis, because of a compensatory expression of inducible nitric oxide synthase (iNOS). L-NAME was administered in the drinking water (0.1-1.0 mg/ml) for 7 days to guinea pigs and rats. Nitric oxide synthesis was assessed by [1] ex vivo formation of nitrite in blood vessels and intestine [2] tissue levels of cGMP [3] iNOS gene expression by RT-PCR [4] NADPH diaphorase staining [5] direct assessment of NO release in tissue explants using a microelectrode/electrochemical detection system. Chronic L-NAME administration elevated intestinal cGMP and nitrite levels in guinea pigs (p < 0.05). In rats, intestinal nitrite levels were comparable in control and L-NAME treatment groups, whereas direct assessment of NO release defined a marked increase in the L-NAME group. Chronic L-NAME resulted in an induction of iNOS gene expression in rats and guinea pigs and novel sites of NADPH diaphorase staining in the intestine. We conclude that iNOS expression is responsible for a compensatory increase or normalization of NO synthesis during sustained administration of L-NAME.  相似文献   

12.
The participation of nitric oxide and vasoactive intestinal peptide (VIP) in the neurogenic regulation of bovine cerebral arteries was investigated. Nitrergic nerve fibers and ganglion-like groups of neurons were revealed by NADPH-diaphorase staining in the adventitial layer of bovine cerebral arteries. NADPH diaphorase also was present in endothelial cells but not in the smooth muscle layer. Double immunolabeling for neuronal nitric oxide synthase and VIP indicated that both molecules co-localized in the same nerve fibers in these vessels. Transmural nerve stimulation (200 mA, 0.2 milliseconds, 1 to 8 Hz) of endothelium-denuded bovine cerebral artery rings precontracted with prostaglandin F2 alpha, produced tetrodotoxin-sensitive relaxations that were completely suppressed by NG-nitro-L-arginine methyl ester (L-NAME) and by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline (ODQ), but were not affected by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), nor by VIP tachyphylaxis induced by pretreatment with 1 mumol/L VIP. Transmural nerve stimulation also elicited increases in intracellular cyclic GMP concentration, which were prevented by L-NAME, and small decreases in intracellular cyclic AMP concentration. Addition of VIP to bovine cerebral artery rings without endothelium produced a concentration-dependent relaxation that was partially inhibited by L-NAME, ODQ, and SQ 22,536. The effects of L-NAME and SQ 22,536 were additive. VIP induced a transient increase in intracellular cyclic GMP concentration, which was maximal 1 minute after VIP addition, when the highest relaxation rate was observed, and which was blocked by L-NAME. It is concluded that nitric oxide produced by perivascular neurons and nerve fibers fully accounts for the experimental neurogenic relaxation of bovine cerebral arteries and that VIP, which also is present in the same perivascular fibers, acts as a neuromodulator by activating neuronal nitric oxide synthase.  相似文献   

13.
Evidence suggests the existence of multiple interactions between dopamine, glutamate and nitric oxide (NO) in brain structures associated with psychomotor stimulation. The present study was undertaken to investigate the effect of the relatively selective inhibitor of the neuronal nitric oxide synthase (NOS) isoform, 7-nitroindazole (7-NI), on the development of sensitization to the locomotor stimulating effect of cocaine and methamphetamine (METH). Male Swiss Webster mice that received 15 mg/kg cocaine once a day for 5 days developed a marked locomotor sensitization to a challenge cocaine (15 mg/kg) or cross-sensitization to a challenge METH (0.5 mg/kg) injection given after a 10-day drug-free period. This treatment also produced a context-dependent sensitization as evident by the sensitized response to a challenge saline injection. Pretreatment with 7-NI (25 mg/kg) 30 min before cocaine administration (5 days) completely blocked the induction of sensitization to cocaine, the cross-sensitization to METH and the conditioned locomotion induced by cocaine. 7-NI when given alone, either acutely or for 5 days, had no significant effect on the locomotor activity of animals. Animals treated with METH (1.0 mg/kg) for 5 days developed marked sensitization to challenge METH (0.5 mg/kg), cross-sensitization to challenge cocaine (15 mg/kg) and context-dependent locomotion. Pretreatment with 7-NI (25 mg/kg) attenuated the sensitized response to METH and the cross-sensitization to cocaine as revealed after a 10-day drug-free period. However, the METH-induced conditioned locomotion was unaffected by the pretreatment with 7-NI. The present study supports the role of brain NO in the development of sensitization to both psychostimulants, cocaine and METH. However, it appears that the inability of 7-NI to completely abolish the sensitized responses induced after METH administration is the result of the resistible conditioned locomotion caused by METH, but not by cocaine.  相似文献   

14.
15.
Murine macrophage nitric oxide synthase (NOS) was expressed in E. coli and purified in the presence (holoNOS) or absence (H4B-free NOS) of (6R)-tetrahydro-L-biopterin (H4B). Isolation of active enzyme required the coexpression of calmodulin. Recombinant holoNOS displayed similar spectral characteristics and activity as the enzyme isolated from murine macrophages. H4B-free NOS exhibited a Soret band at approximately 420 nm and, by analytical gel filtration, consisted of a mixture of monomers and dimers. H4B-free NOS catalyzed the oxidation of NG-hydroxy-L-arginine (NHA) with either hydrogen peroxide (H2O2) or NADPH and O2 as substrates. No product formation from arginine was observed under either condition. The amino acid products of NHA oxidation in both the H2O2 and NADPH/O2 reactions were determined to be citrulline and Ndelta-cyanoornithine (CN-orn). Nitrite and nitrate were also formed. Chemiluminescent analysis did not detect the formation of nitric oxide (*NO) in the NADPH/O2 reaction. The initial inorganic product of the NADPH/O2 reaction is proposed to be the nitroxyl anion (NO-) based on the formation of a ferrous nitrosyl complex using the heme domain of soluble guanylate cyclase as a trap, and the formation of a ferrous nitrosyl complex of H4B-free NOS during turnover of NHA and NADPH. NO- is unstable and, under the conditions of the reaction, is oxidized to nitrite and nitrate. At 25 degreesC, the H2O2-supported reaction had a specific activity of 120 +/- 14 nmol min-1 mg-1 and the NADPH-supported reaction had a specific activity of 31 +/- 6 nmol min-1 mg-1 with a KM,app for NHA of 129 +/- 9 microM. HoloNOS catalyzed the H2O2-supported reaction with a specific activity of 815 +/- 30 nmol min-1 mg-1 and the NADPH-dependent reaction to produce *NO and citrulline at 171 +/- 20 nmol min-1 mg-1 with a KM, app for NHA in the NADPH reaction of 36.9 +/- 0.3 microM.  相似文献   

16.
OBJECTIVES: This study sought to investigate the effects of nitric oxide inhibition in a murine model of coxsackievirus B3 myocarditis. BACKGROUND: Little is known about the contribution of nitric oxide to the pathophysiology of myocarditis. METHODS: Antiviral activity was tested in vitro using nitric oxide inhibition by treatment with activated macrophages of NG-nitro-L-arginine methyl ester. In the in vivo experiments, NG-nitro-L-arginine methyl ester and NG-nitro-D-arginine methyl ester (both at 100 micrograms/ml) were administered to C3H/He mice early (days 0 to 14) and late (days 14 to 35) after infection with coxsackievirus B3. RESULTS: In the in vitro experiments with interferon-gamma- and lipopolysaccharide-induced activated murine macrophages, treatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, but not its inactive enantiomer NG-nitro-D-arginine methyl ester, restored coxsackievirus B3 titers. In the in vivo experiments in the early treatment group, myocardial virus titers were higher in NG-nitro-L-arginine methyl ester-treated than infected untreated animals, and both inflammatory cell infiltration and necrosis were more severe. In the late treatment group, more severe necrosis and more dense myocardial and perivascular fibrosis were observed in NG-nitro-L-arginine methyl ester-treated than in infected untreated animals. NG-Nitro-D-arginine methyl ester administration was ineffective. CONCLUSIONS: Nitric oxide inhibition increases myocardial virus titers, resulting in the aggravation of cardiac pathology in the early stage of coxsackievirus B3 myocarditis. In the late stage, it induces more severe cardiomyopathic lesions. Nitric oxide plays a defensive role in the pathogenesis of coxsackievirus B3 myocarditis.  相似文献   

17.
The anti-estrogen drug tamoxifen (TMX) was found to act as a strong inhibitor of purified neuronal nitric oxide synthase (nNOS) (IC50 = 2 +/- 0.5 microM), whereas it was inactive toward inducible macrophage NOS (IC50 > 100 microM). TMX affected the activation of NOS by calmodulin, as it not only inhibited L-arginine oxidation to nitric oxide and L-citrulline but also NADPH oxidation and calmodulin-dependent cytochrome c reduction catalyzed by nNOS. These results suggest that TMX could exert some of its biological effects by interfering with constitutive NOS-dependent formation of nitric oxide and/or superoxide ion in various tissues.  相似文献   

18.
19.
Nitric oxide (NO) synthesis is increased in ulcerative colitis, but the role of NO in colitis is poorly understood. The present study employed Nw-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, in rats to evaluate the effect of NO on 2,4,6-trinitrobenzenesulphonic acid (TNB)-induced colitis. L-NAME solutions were placed in subcutaneous, osmotic mini-pumps which continuously released L-NAME at 0.042, 0.208, 0.417, or 1.667 mg kg-1 h-1. L-NAME dose-dependently enhanced lesions in TNB-induced colitis. The two higher doses of L-NAME significantly increased colonic mucosal damage, although there was slight, nonsignificant reduced lesion formation with the lowest dose of L-NAME. 0.042 mg kg-1 h-1. A single dose of L-NAME at 100 mg kg-1 subcutaneously injected daily in TNB-treated rats also increased lesions, and these ulcerogenic actions of L-NAME were reversed by L-arginine but not by D-arginine (both at 500 mg kg-1, s.c.). Only the highest dose of L-NAME (mini-pump) significantly depressed myeloperoxidase (MPO) activity. Faecal occult bleeding showed a close relationship with severity of colitis. These findings suggest that there may exist a balance between NO protective and aggressive effects. In TNB-induced colitis, antagonism of endogenous NO generation was intensified, whereas slight inhibition of NO synthesis reduced lesions. Variations in responses, related to timing or dose changes in L-NAME, may reflect the differences in inducible vs constitutive NO synthase isoforms.  相似文献   

20.
To investigate the role of superoxide in the toxicity of nitric oxide (NO), we examined the effect of nitric oxide synthase (NOS) inhibition on brain infarction in transgenic mice overexpressing CuZn-superoxide dismutase (SOD-1). Male SOD-transgenic mice and non-transgenic littermates (30-35 g) were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Either NG-nitro-L-arginine methyl ester (L-NAME; 3 mg/kg), a mixed neuronal and endothelial NOS inhibitor, or 7-nitroindazole (7-NI; 25 mg/kg), a selective neuronal NOS inhibitor, was administered intraperitoneally 5 min after the onset of ischemia. At 24 h of reperfusion, the mice were decapitated and the infarct volume was evaluated in each group. In the nontransgenic mice, L-NAME significantly increased the infarct volume as compared with the vehicle, while 7-NI significantly decreased it. In the SOD-transgenic mice, L-NAME-treated animals showed a significantly larger infarct volume than vehicle-treated ones, whereas there were no significant differences between 7-NI- and vehicle-treated mice. Our findings suggest that selective inhibition of neuronal NOS ameliorates ischemic brain injury and that both neuronal and endothelial NOS inhibition may result in the deterioration of ischemic injury due to vasoconstriction of the brain. Since L-NAME increased infarct volume even in SOD-transgenic mice, the protective effect of SOD could result from the vasodilation by increased endothelial NO as well as the reduction of neuronal injury due to less production of peroxynitrite compared to wild-type mice. Moreover, the neurotoxic role of NO might not be dependent on NO itself, but the reaction with superoxide to form peroxynitrite, because of no additive effects of SOD and a neuronal NOS inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号