首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic voltammetric behaviors at a platinum electrode of an amphiphilic block copolymer [poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F127)] in aqueous solutions were investigated. The mechanism of the electrochemical reaction of F127 at a platinum electrode was deduced. The diffusion coefficients of different-shaped aggregates formed by F127 were determined on this basis. The first and second critical micelle concentrations, corresponding to the formation of spherical micelles and the transition of the spherical to rod-like micelles, were 3.72×10−4 mol·L−1 and 1.49×10−3 mol·L−1, respectively, which could be confirmed by the fluorescent anisotropy of pyrene in the F127 aggregates and the morphology of F127 micelles observed by freeze-fracture transmission electron microscopy.  相似文献   

2.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

3.
The structures of an amphiphilic conjugated graft copolymer, poly(2,3-diphenyl-5-(trimethylene-heptadeca(oxyethylene)-methoxy-phenylene vinylene) (denoted as PVEO17) composing of a conjugated DP-PPV backbone and PEO side chains, in bulk and solutions with tetrahydrofuran (THF) and water have been investigated by small-angle X-ray scattering (SAXS). In bulk state, the DP-PPV main chains in PVEO17 stacked to form flat disk microdomains dispersed in the PEO side-chain matrix. The corresponding wide angle X-ray scattering pattern revealed the existence of crystallinity of the PEO side chains. The structure of the polymer in solution was affected by the solvent quality and the polymer concentration. PVEO17 chains were relatively well dispersed in THF. In aqueous solutions, however, the amphiphilic PVEO17 chains aggregated significantly over the concentration range of 1–8 wt%, where the polymer was found to self-organize to form cylindrical micelles with the aggregation number increasing with the increase of concentration. The photophysical properties characterized by UV–Vis and photoluminescence spectroscopy were strongly affected by the aggregation state of the polymer.  相似文献   

4.
Polymer/multiwall carbon nanotube (MWCNT) composites were prepared by using amphiphilic block copolymers as dispersant. First, MWCNTs were wrapped with amphiphilic block copolymers in aqueous solution. Poly(ethylene oxide) was selected as the hydrophilic block because of its strong affinity with water while one of the following polymers: poly(ethylene), poly(butadiene), poly(styrene), poly(propylene oxide), or poly(thiophene) was used as the hydrophobic block of the copolymers. The dispersions were characterized by optical microscopy and transmission electron microscopy along with UV–Visible adsorption and dynamic light scattering. Based on the results, we could assess the effect on CNT dispersion quality of both, the molar mass of copolymers, the nature of the hydrophobic block and the length of hydrophilic block. The crystallization behavior of composites prepared from these dispersions was investigated. Results were related to the dispersion of the nanoparticles in the polymer matrix.  相似文献   

5.
A. Friday  C. Booth 《Polymer》1978,19(9):1035-1042
Urethane linked block polymers of poly(ethylene oxide) have been prepared and fractionated. Samples having 1 to 20 blocks per molecule, with molecular weights ranging from 1500 to 67 000 g/mol, have been examined by a number of techniques (small-angle X-ray scattering, differential scanning calorimetry, dilatometry, optical microscopy) in order to determine their crystallinities, melting points and spherulite growth rates. For a series of fractions having an average block length of 34 oxyethylene units with a range of 3 to 20 blocks per molecule, we find that equilibrium melting points are practically independent of molecular weight (6000 < M?W < 40 000). Analysis of the temperature dependence of the spherulite growth rates of these fractions leads to the conclusion that the pre-exponential factor (G0) is practically independent of molecular weight and that the end interfacial free energy (σe) increases with molecular weight. Analysis of the experimental results for series of fractions having average block lengths of 45 or of 90 oxyethylene units is complicated by chain folding in the crystalline lamellae.  相似文献   

6.
Thermosetting systems based on DGEBA epoxy resin and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) triblock copolymer were prepared and investigated. Different mixtures were obtained by using different contents of EPE block copolymer in order to study the influence of the modifier on the properties of the final materials. All thermosetting systems were prepared without using any solvent and were cured at ambient temperature, taking into account the lower critical solution temperature (LCST) behavior of the block copolymer. DSC results indicated that the addition of block copolymer affected to the curing reaction time and to the glass transition temperature of the mixtures and also the miscibility of EPE triblock copolymer in the epoxy resin was proved. The morphologies studied by AFM and TEM showed clear nanostructuration up to 25 wt % EPE content. The addition of 5 and 15 wt % of EPE block copolymer led to a considerable improvement in the toughness of the materials. When EPE block copolymer was added to the epoxy resin, the surface became more hydrophilic and the UV–vis transmittance decreased slightly maintaining a high level of transparency.  相似文献   

7.
Rhodamine B (RhB)-anchored amphiphilic poly(poly(ethylene glycol)methacrylate)-b-poly(glycidyl methacrylate) block copolymer (PPEGMA-b-PGMA/RhB) has been prepared by a sequential atom transfer radical polymerization and post-functionalization of RhB. The chemical structure of PPEGMA-b-PGMA/RhB is characterized with gel-permeation chromatography, Fourier-transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. PPEGMA-b-PGMA/RhB has shown self-assembly behaviors in tetrahydrofuran and aqueous solutions. The RhB aggregation induced with the inter-molecular interaction of RhB results in the various core–shell structures of the assembled nanoparticles. The photoluminescent properties of the PPEGMA-b-PGMA/RhB nanoparticles are structure-dependent and exhibit yellow-light, blue-light, and white-light emissions. The fluorescent organic nanoparticles of PPEGMA-b-PGMA/RhB in aqueous solution show low cytotoxicity and have been used as a bio-dye for cell labelling. Internalization of PPEGMA-b-PGMA/RhB nanoparticles into HELA cells to exhibit fluorescent images has been demonstrated.  相似文献   

8.
Qipeng Guo  Ralf Thomann 《Polymer》2007,48(14):3925-3929
Mesostructurally ordered inorganic-organic hybrid composite materials were successfully synthesized by utilizing a low-molecular-weight amphiphilic polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer as the directing agent. The hybrid composites were formed via the sol-gel reaction of inorganic precursor tetraethoxysilane (TEOS) in an acidic ethanol/water solution with various amounts of PE-PEO. In these composite materials, the hydrophobic PE block of the PE-PEO copolymer forms separate microphase on the nanoscales within the rigid matrix of silica network. The crystallization of the PE block is strictly restricted within the microphase by the rigid silica matrix and takes place through homogeneous nucleation under the nanoscale confinement environment.  相似文献   

9.
Miscibility, crystallization and morphology of unsaturated polyester (UP) matrices, nanostructured with a poly[(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)] (PEO-b-PPO-b-PEO) block copolymer (BCP) from 0 to 50 wt% has been investigated. Additionally, the role of each block on miscibility and morphology of cured mixtures was studied. Behaviours of non-reactive mixtures of UP thermosetting precursor with two BCPs composed of similar and strong immiscible central PPO block were compared. It was found that one BCP had PEO blocks with not enough molecular weight to compatibilize the PPO block with the UP thermosetting precursor at room temperature. Transmitted light intensity study of mixtures indicated that during curing at 35 °C no macrophase separation took place, contrary to the systems cured at temperatures equal or higher than 60 °C. Curing mixtures at 35 °C produced nanostructured matrices with almost unchanged transparency. Phase separation and miscibility of BCP with UP matrix were measured by means of DSC and DMA. AFM analysis showed worm-like morphology with diameters from 10 to 20 nm and length that evolved from 50 nm to 1 μm with increase of BCP content.  相似文献   

10.
New temperature sensitive AB, ABA, and BAB amphiphilic block copolymers consisting of hydrophilic poly(ethylene oxide) and hydrophobic poly(ethyl glycidyl carbamate) blocks were synthesized by anionic polymerization followed by chemical modification reactions. The self-association of the block copolymers in aqueous media was studied by UV-vis spectroscopy and dynamic and static light scattering. The obtained block copolymers spontaneously form micelles in aqueous media. The critical micellization concentration varied from 0.5 to 4 g/L depending on the copolymer architecture and composition. The influence of the temperature upon the self-association of the block copolymers was investigated. The increase of temperature did not affect the value of the critical micellization concentration, but led to the formation of better defined micelles with narrow size distribution.  相似文献   

11.
12.
The solid-state morphology of polystyrene-poly(ethylene oxide) metallo-supramolecular diblock copolymer PS20-[Ru]-PEO70, has been investigated by small-and wide-angle X-ray scattering and atomic force microscopy. Above the melting point of PEO the metal-ligand complexes and their associated counter ions are known to form aggregates within the still disordered polymer matrix of PS and PEO. Crystallization of PEO induces microphase separation between the PS and the PEO blocks. In addition, the metal-ligand aggregates are forced out of the crystalline PEO part and subsequently order at the interface in the amorphous PS block into a (short-range) square lattice.  相似文献   

13.
Zhongfan Jia 《Polymer》2006,47(22):7615-7620
A novel (ABCB)n type ternary amphiphilic multiblock copolymer was synthesized by stepwise insertion of monomers into the trithiocarbonate-embedded poly(ethylene oxide) (PEO) macro-chain transfer agent (PEO-CTA)n. (PEO-CTA)n was synthesized first by coupling of α,ω-dihydroxyl PEO with dicarboxylic trithiocarbonate, then styrene (St) and t-butyl acrylate (tBA) were inserted into the (PEO-CTA)n successively to yield (PEO-b-PS)n and (PEO-b-PS-b-PtBA-b-PS)n, respectively. After hydrolysis of the (PEO-b-PS-b-PtBA-b-PS)n, the final product (PEO-b-PS-b-PAA-b-PS)n was obtained.  相似文献   

14.
Ordered mesoporous tin oxide and tin phosphate were successfully synthesized via two-step nanocasting route. The SBA-15 silica and CMK-3 carbon were used as hard templates. Powder X-ray diffraction, nitrogen adsorption and transmission electron microscopy confirmed hexagonal mesoporous structure of resulted products. Mesoporous tin oxide indicated crystalline walls (cassiterite). The mesoporous products showed considerable catalytic activity in propan-2-ol decomposition. The tin oxide led the dehydrogenation towards acetone, while mesoporous tin phosphate exhibited activity of acid sites resulting in dehydration to propene.  相似文献   

15.
High-performance surfactants have been developed for the preparation of water-in-oil high internal phase emulsions (HIPE), particularly for the preparation of polymerized HIPE foams. High-efficiency surfactants with poly(butylene oxide)/poly(ethylene oxide) (BO/EO) block copolymer backbones have been developed that can stabilize an HIPE through polymerization at concentrations as low as 0.006 wt% based on total emulsion weight. Polymerizable versions have been developed that bind into the polymeric foam backbone. BO/EO block copolymer surfactants also allow preparation of polymerized HIPE foams without salt in the aqueous phase. HIPE with the BO/EO surfactants have been prepared at room temperature and polymerized at temperatures exceeding 90°C. By minimizing the required amount of surfactant, allowing the surfactant to react during HIPE polymerizations, eliminating the need for salt, and stabilizing over a broad range of temperatures, BO/EO block copolymer surfactants have demonstrated their place as high-performance HIPE surfactants.  相似文献   

16.
Complexes that were insoluble in water were formed by mixing aqueous solutions of a block copolymer of 2-ethtyl-2-oxazoline (EOX) and ethylene oxide (EO) and those of poly(methacrylic acid) (PMAA). The structures of these complexes were investigated by the results obtained mainly by infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The molar ratio of MAA in the complexes was also estimated by analyzing the infrared spectra. Whereas homopolymers of EOX and EO formed nearly equimolar complexes with PMAA irrespective of the feed molar ratio, the molar ratio of MAA in the complexes formed by the block copolymer and PMAA depended on the feed molar ratio. Although the infrared spectra indicated structural differences between the homopolymer of EOX and EOX in the block copolymer before forming complexes, the spectra obtained for the complexes formed by the homopolymer and the block copolymer were similar to each other.  相似文献   

17.
Antonios Kelarakis 《Polymer》2011,52(10):2221-266
We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay surface modifier was synthesized and characterized. Incorporation of organoclays with polar (MMT-OH) or aromatic groups (MMT-Ar) suppresses the crystallization of polymer chains in low MW PEO, but does not significantly affect the crystallization of high MW matrices. In addition, the relative complex viscosity of the nanocomposites based on low MW PEO increases significantly, but the effect is less pronounced at higher MWs. The viscosity increases in the series MMT-Alk < MMT-OH < MMT-Ar. In contrast to the neat PEO which exhibits a monotonic decrease of viscosity with temperature, all nanocomposites show an increase after a certain temperature. This is the first report of such dramatic enhancements in the viscoelasticity of nanocomposites, which are reversible, are based on a simple polymer matrix and are true in a wide temperature range.  相似文献   

18.
The volatility behavior of perfume compounds in poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) copolymer was investigated by means of dynamic and static headspace analyses. Suppression of the volatility of perfume compounds by EO105PO27EO105 copolymer was markedly greater than by polyethyleneglycol. This suppressive effect may be due to micelle and gel formation of EO105PO27EO105 copolymer. EO105PO27EO105 copolymer is expected to be useful as a novel sustained-release carrier that maintains constant release rates for the volatility of perfume compounds over a wide temperature range.  相似文献   

19.
AB amphiphilic comb-like block copolymers of poly(oligo[ethylene glycol] methyl ether methacrylate) and polydimethylsiloxane were synthesised with a methodology based on atom transfer radical polymerization (ATRP). The anionic ring opening polymerisation of hexamethylcyclotrisiloxane followed by reaction with 3-(chlorodimethylsilyl) propyl 2-bromo-2-methylpropanoate propyldimethylchlorosilane gave suitable macroinitiators for the ATRP of oligo[ethylene glycol] methyl ether methacrylate. The latter synthetic procedure was optimised by performing a number of syntheses varying the reaction solvent, catalytic complex and the temperature used. Copolymers with relatively high polydispersity indices (Mw/Mn>1.3) could be synthesised at room temperature by employing a Cu(I)Br:N,N,N′,N′,N″-pentamethyldiethylenetriamine complex in n-propanol with Cu(II)Br. The optimum reaction conditions employed a Cu(I)Cl:N-(n-propyl)-2-pyridyl(methanimine) complex with an n-propanol/water mixture or toluene as solvent at 90 °C. This gave block copolymers of the desired molecular weights and polydispersity indices of less than 1.1. The block copolymers were characterised with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography.  相似文献   

20.
Block copolymers are made up of blocks of different polymerized monomers. Among the block copolymers, amphiphilic block copolymers can self-assemble to form nano-sized vehicles, such as micelles, nanoparticles, polymersomes, in aqueous or non-aqueous media. This review describes the synthesis, formation, and major applications of amphiphilic block copolymer and corresponding vehicles in order to provide an overview of the current features of functionalized block copolymers for drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号