首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic voltammetric behaviors at a platinum electrode of an amphiphilic block copolymer [poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F127)] in aqueous solutions were investigated. The mechanism of the electrochemical reaction of F127 at a platinum electrode was deduced. The diffusion coefficients of different-shaped aggregates formed by F127 were determined on this basis. The first and second critical micelle concentrations, corresponding to the formation of spherical micelles and the transition of the spherical to rod-like micelles, were 3.72×10−4 mol·L−1 and 1.49×10−3 mol·L−1, respectively, which could be confirmed by the fluorescent anisotropy of pyrene in the F127 aggregates and the morphology of F127 micelles observed by freeze-fracture transmission electron microscopy.  相似文献   

2.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

3.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

4.
The structures of an amphiphilic conjugated graft copolymer, poly(2,3-diphenyl-5-(trimethylene-heptadeca(oxyethylene)-methoxy-phenylene vinylene) (denoted as PVEO17) composing of a conjugated DP-PPV backbone and PEO side chains, in bulk and solutions with tetrahydrofuran (THF) and water have been investigated by small-angle X-ray scattering (SAXS). In bulk state, the DP-PPV main chains in PVEO17 stacked to form flat disk microdomains dispersed in the PEO side-chain matrix. The corresponding wide angle X-ray scattering pattern revealed the existence of crystallinity of the PEO side chains. The structure of the polymer in solution was affected by the solvent quality and the polymer concentration. PVEO17 chains were relatively well dispersed in THF. In aqueous solutions, however, the amphiphilic PVEO17 chains aggregated significantly over the concentration range of 1–8 wt%, where the polymer was found to self-organize to form cylindrical micelles with the aggregation number increasing with the increase of concentration. The photophysical properties characterized by UV–Vis and photoluminescence spectroscopy were strongly affected by the aggregation state of the polymer.  相似文献   

5.
6.
PEO‐b‐PBA [PEO: poly(ethylene oxide); PBA: poly(butyl acrylate)], an amphiphilic block copolymer, prepared by redox radical polymerization, was characterized by infrared and 1H nuclear magnetic resonance spectroscopy. The result revealed the existence of PEO and PBA segment in purified block copolymer. The thermal behavior of the block copolymer was determined by differential scanning calorimetry. With the introduction of PBA noncrystalline segment, the crystallinity of PEO was decreased. The emulsifying and water absorptive properties of PEO‐b‐PBA were also examined. It was found that the emulsifying volume and type were dependent on the amount of block copolymer and the PEO content in block copolymer. Under a certain range, the emulsifying volume increases with an increase of PEO content. The more the PEO content in block copolymer, the stronger the water absorptivity was. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3432–3436, 2003  相似文献   

7.
Polymer/multiwall carbon nanotube (MWCNT) composites were prepared by using amphiphilic block copolymers as dispersant. First, MWCNTs were wrapped with amphiphilic block copolymers in aqueous solution. Poly(ethylene oxide) was selected as the hydrophilic block because of its strong affinity with water while one of the following polymers: poly(ethylene), poly(butadiene), poly(styrene), poly(propylene oxide), or poly(thiophene) was used as the hydrophobic block of the copolymers. The dispersions were characterized by optical microscopy and transmission electron microscopy along with UV–Visible adsorption and dynamic light scattering. Based on the results, we could assess the effect on CNT dispersion quality of both, the molar mass of copolymers, the nature of the hydrophobic block and the length of hydrophilic block. The crystallization behavior of composites prepared from these dispersions was investigated. Results were related to the dispersion of the nanoparticles in the polymer matrix.  相似文献   

8.
以三硫代碳酸二(α, α'-二甲基-α-乙酸)酯(BDATC)为链转移剂, 以苯乙烯、马来酸酐、丙烯酸为原料, 通过可逆加成-断裂链转移(RAFT)合成了双亲嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA。通过选择性溶剂N, N-二甲基甲酰胺(DMF)诱导聚合物进行自组装, 利用紫外-可见光光度仪、纳米激光粒度仪详细研究了共聚物中亲疏水嵌段长度、初始浓度、体系pH值对聚合物自组装行为的影响。通过化学交联的方法制备得到了聚合物交联胶束, 利用透射电镜表征了形貌与尺寸, 研究明确了其形状和尺寸的稳定性。结果表明, 上述因素均会影响共聚物的自组装行为和自组装胶束的形态, 经乙二胺交联得到的交联自组装胶束平均粒径为145.4nm, 并具有良好的形状和尺寸稳定性。  相似文献   

9.
Nanostructured block copolymer electrolytes (BCEs) based on poly(ethylene oxide) (PEO) are considered as promising candidates for solid‐state electrolytes in high energy density lithium metal batteries (LMBs). Because of their self‐assembly properties, they confer on electrolytes both high mechanical strength and sufficient ionic conductivity, which linear PEO cannot provide. Two types of PEO‐based BCEs are commonly known. There are the traditional ones, also called dual‐ion conducting BCEs, which are a mixture of block copolymer chains and lithium salts. In these systems, the cations and anions participate in the conduction, inducing a concentration polarization in the electrolyte, thus leading to poor performances of LMBs. The second family of BCEs are single‐lithium‐ion conducting BCEs (SIC‐BCEs), which consist of anions being covalently grafted to the polymer backbone, therefore involving conduction by lithium ions only. SIC‐BCEs have marked advantages over dual‐ion conducting BCEs due to a high lithium ion transference number, absence of anion concentration gradients as well as low rate of lithium dendrite growth. This review focuses on the recent developments in BCEs for applications in LMBs with particular emphasis on the physicochemical and electrochemical properties of these materials. © 2018 Society of Chemical Industry  相似文献   

10.
A. Friday  C. Booth 《Polymer》1978,19(9):1035-1042
Urethane linked block polymers of poly(ethylene oxide) have been prepared and fractionated. Samples having 1 to 20 blocks per molecule, with molecular weights ranging from 1500 to 67 000 g/mol, have been examined by a number of techniques (small-angle X-ray scattering, differential scanning calorimetry, dilatometry, optical microscopy) in order to determine their crystallinities, melting points and spherulite growth rates. For a series of fractions having an average block length of 34 oxyethylene units with a range of 3 to 20 blocks per molecule, we find that equilibrium melting points are practically independent of molecular weight (6000 < M?W < 40 000). Analysis of the temperature dependence of the spherulite growth rates of these fractions leads to the conclusion that the pre-exponential factor (G0) is practically independent of molecular weight and that the end interfacial free energy (σe) increases with molecular weight. Analysis of the experimental results for series of fractions having average block lengths of 45 or of 90 oxyethylene units is complicated by chain folding in the crystalline lamellae.  相似文献   

11.
Thermosetting systems based on DGEBA epoxy resin and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) triblock copolymer were prepared and investigated. Different mixtures were obtained by using different contents of EPE block copolymer in order to study the influence of the modifier on the properties of the final materials. All thermosetting systems were prepared without using any solvent and were cured at ambient temperature, taking into account the lower critical solution temperature (LCST) behavior of the block copolymer. DSC results indicated that the addition of block copolymer affected to the curing reaction time and to the glass transition temperature of the mixtures and also the miscibility of EPE triblock copolymer in the epoxy resin was proved. The morphologies studied by AFM and TEM showed clear nanostructuration up to 25 wt % EPE content. The addition of 5 and 15 wt % of EPE block copolymer led to a considerable improvement in the toughness of the materials. When EPE block copolymer was added to the epoxy resin, the surface became more hydrophilic and the UV–vis transmittance decreased slightly maintaining a high level of transparency.  相似文献   

12.
Rhodamine B (RhB)-anchored amphiphilic poly(poly(ethylene glycol)methacrylate)-b-poly(glycidyl methacrylate) block copolymer (PPEGMA-b-PGMA/RhB) has been prepared by a sequential atom transfer radical polymerization and post-functionalization of RhB. The chemical structure of PPEGMA-b-PGMA/RhB is characterized with gel-permeation chromatography, Fourier-transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. PPEGMA-b-PGMA/RhB has shown self-assembly behaviors in tetrahydrofuran and aqueous solutions. The RhB aggregation induced with the inter-molecular interaction of RhB results in the various core–shell structures of the assembled nanoparticles. The photoluminescent properties of the PPEGMA-b-PGMA/RhB nanoparticles are structure-dependent and exhibit yellow-light, blue-light, and white-light emissions. The fluorescent organic nanoparticles of PPEGMA-b-PGMA/RhB in aqueous solution show low cytotoxicity and have been used as a bio-dye for cell labelling. Internalization of PPEGMA-b-PGMA/RhB nanoparticles into HELA cells to exhibit fluorescent images has been demonstrated.  相似文献   

13.
New temperature sensitive AB, ABA, and BAB amphiphilic block copolymers consisting of hydrophilic poly(ethylene oxide) and hydrophobic poly(ethyl glycidyl carbamate) blocks were synthesized by anionic polymerization followed by chemical modification reactions. The self-association of the block copolymers in aqueous media was studied by UV-vis spectroscopy and dynamic and static light scattering. The obtained block copolymers spontaneously form micelles in aqueous media. The critical micellization concentration varied from 0.5 to 4 g/L depending on the copolymer architecture and composition. The influence of the temperature upon the self-association of the block copolymers was investigated. The increase of temperature did not affect the value of the critical micellization concentration, but led to the formation of better defined micelles with narrow size distribution.  相似文献   

14.
Miscibility, crystallization and morphology of unsaturated polyester (UP) matrices, nanostructured with a poly[(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)] (PEO-b-PPO-b-PEO) block copolymer (BCP) from 0 to 50 wt% has been investigated. Additionally, the role of each block on miscibility and morphology of cured mixtures was studied. Behaviours of non-reactive mixtures of UP thermosetting precursor with two BCPs composed of similar and strong immiscible central PPO block were compared. It was found that one BCP had PEO blocks with not enough molecular weight to compatibilize the PPO block with the UP thermosetting precursor at room temperature. Transmitted light intensity study of mixtures indicated that during curing at 35 °C no macrophase separation took place, contrary to the systems cured at temperatures equal or higher than 60 °C. Curing mixtures at 35 °C produced nanostructured matrices with almost unchanged transparency. Phase separation and miscibility of BCP with UP matrix were measured by means of DSC and DMA. AFM analysis showed worm-like morphology with diameters from 10 to 20 nm and length that evolved from 50 nm to 1 μm with increase of BCP content.  相似文献   

15.
Qipeng Guo  Ralf Thomann 《Polymer》2007,48(14):3925-3929
Mesostructurally ordered inorganic-organic hybrid composite materials were successfully synthesized by utilizing a low-molecular-weight amphiphilic polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer as the directing agent. The hybrid composites were formed via the sol-gel reaction of inorganic precursor tetraethoxysilane (TEOS) in an acidic ethanol/water solution with various amounts of PE-PEO. In these composite materials, the hydrophobic PE block of the PE-PEO copolymer forms separate microphase on the nanoscales within the rigid matrix of silica network. The crystallization of the PE block is strictly restricted within the microphase by the rigid silica matrix and takes place through homogeneous nucleation under the nanoscale confinement environment.  相似文献   

16.
In this article, we report on some properties of polymer nanocomposites prepared from dispersions of multiwall carbon nanotubes (CNT) in aqueous solution prepared using amphiphilic block copolymers. These nanocomposites are made of polyethylene oxide as matrix and CNT wrapped with copolymers as fillers. We investigated the rheological and electrical behavior of such composites with the objectives of underlined the effect of wrapping. Two rheological and only one electrical percolation thresholds have been observed and related to polymer–CNT and CNT–CNT networks. The low values of these percolation thresholds agree with a homogeneous dispersion of CNT in the matrix. We also demonstrated that specific wrapping may induce an increase of electrical conductivity without affecting too much the viscosity of the melt. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

17.
A water‐swellable rubber (WSR), compatibilized by the amphiphilic block copolymer, has been prepared by blending a natural rubber (NR) matrix with crosslinked sodium polyacrylate (CSP), poly(ethylene oxide)‐b‐poly(butyl acrylate) (PEO‐b‐PBA), poly(ethylene glycol) (PEG), reinforced filler, and vulcanizing agents. The preparation process was described. The microphase structure of WSR was characterized by a scanning electron microscopy (SEM) photograph. The dependence of the degree of the water‐absorbing and the water‐swelling, the water‐absorbing and water‐swelling rates on CSP, PEG, and PEO‐b‐PBA contents were investigated. The compatibilizing mechanism of PEO‐b‐PBA on WSR was studied. And the optimum composition range was identified: CSP (30–60 phr), PEG (10–20 phr) PEO‐b‐PBA (PEO/PBA = 0.36, 5 phr). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3120–3125, 2002  相似文献   

18.
Amphiphilic ABA triblock copolymers of poly(ethylene oxide) (PEO) with methyl methacrylate (MMA) were prepared by atom transfer radical polymerization in bulk and in various solvents with a difunctional PEO macroinitiator and a Cu(I)X/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalyst system at 85°C where X=Cl or Br. The polymerization proceeded via controlled/living process, and the molecular weights of the obtained block copolymers increased linearly with monomer conversion. In the process, the polydispersity decreased and finally reached a value of less than 1.3. The polymerization followed first‐order kinetics with respect to monomer concentration, and increases in the ethylene oxide repeating units or chain length in the macroinitiator decreased the rate of polymerization. The rate of polymerization of MMA with the PEO chloro macroinitiator and CuCl proceeded at approximately half the rate of bromo analogs. A faster rate of polymerization and controlled molecular weights with lower polydispersities were observed in bulk polymerization compared with polar and nonpolar solvent systems. In the bulk polymerization, the number‐average molecular weight by gel permeation chromatography (Mn,GPC) values were very close to the theoretical line, whereas lower than the theoretical line were observed in solution polymerizations. The macroinitiator and their block copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, thermogravimetry (TG)/differential thermal analysis (DTA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). TG/DTA studies of the homo and block copolymers showed two‐step and multistep decomposition patterns. The DSC thermograms exhibited two glass‐transition temperatures at ?17.7 and 92°C for the PEO and poly(methyl methacrylate) (PMMA) blocks, respectively, which indicated that microphase separation between the PEO and PMMA domains. SEM studies indicated a fine dispersion of PEO in the PMMA matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 989–1000, 2005  相似文献   

19.
Amphiphilic microspheres, ranging in size from 3 to 35 μm, were prepared by suspension copolymerization of styrene with poly(ethylene oxide) vinylbenzyl (PEO–VB) macromonomer by changing polymerization conditions. It was found that an increase in the amount of dispersant and the PEO–VB concentration resulted in decreases of the size and size distribution of amphiphilic microspheres. The morphology, size, and size distribution of amphiphilic microspheres were characterized by scanning electron microscopy. The structure of copolymer was confirmed by infrared spectroscopy, differential scanning calorimetry, elemental analysis, and X‐ray photoelectron spectroscopy. The content of the hydroxyl groups localized in the microspheres ranged from 0.05 to 0.2 mmol/g. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 333–339, 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号