首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Abstract  

A series of cerium-tungsten oxide catalysts was prepared by the co-precipitation method and was evaluated for the selective catalytic reduction of NO x by ammonia (NH3-SCR) over a wide temperature range. These catalysts were characterized by BET, XRD, XPS and H2-TPR analyses. The experimental studies demonstrated that, among cerium-tungsten oxides, CeO2–WO3 with a Ce/W molar ratio of 3/2 exhibited the best activity toward NH3-SCR reactions, N2 selectivity and SO2 durability over a broad temperature range of 175–500 °C at a space velocity of 47,000 h−1. The strong interaction between Ce and W could be the main factor leading to the high activity of the CeO2–WO3 mixed oxide catalyst.  相似文献   

4.
The influence of Fe speciation on the decomposition rates of N2O over Fe–ZSM-5 catalysts prepared by Chemical Vapour Impregnation were investigated. Various weight loadings of Fe–ZSM-5 catalysts were prepared from the parent zeolite H-ZSM-5 with a Si:Al ratio of 23 or 30. The effect of Si:Al ratio and Fe weight loading was initially investigated before focussing on a single weight loading and the effects of acid washing on catalyst activity and iron speciation. UV/Vis spectroscopy, surface area analysis, XPS and ICP-OES of the acid washed catalysts indicated a reduction of ca. 60% of Fe loading when compared to the parent catalyst with a 0.4 wt% Fe loading. The TOF of N2O decomposition at 600 °C improved to 3.99?×?103 s?1 over the acid washed catalyst which had a weight loading of 0.16%, in contrast, the parent catalyst had a TOF of 1.60?×?103 s?1. Propane was added to the gas stream to act as a reductant and remove any inhibiting oxygen species that remain on the surface of the catalyst. Comparison of catalysts with relatively high and low Fe loadings achieved comparable levels of N2O decomposition when propane is present. When only N2O is present, low metal loading Fe–ZSM-5 catalysts are not capable of achieving high conversions due to the low proximity of active framework Fe3+ ions and extra-framework ɑ-Fe species, which limits oxygen desorption. Acid washing extracts Fe from these active sites and deposits it on the surface of the catalyst as FexOy, leading to a drop in activity. The Fe species present in the catalyst were identified using UV/Vis spectroscopy and speculate on the active species. We consider high loadings of Fe do not lead to an active catalyst when propane is present due to the formation of FexOy nanoparticles and clusters during catalyst preparation. These are inactive species which lead to a decrease in overall efficiency of the Fe ions and consequentially a lower TOF.  相似文献   

5.
6.
7.
A series of Pt/Al2O3 catalysts were prepared by the impregnation method and were characterized by TEM, XRD, H2 and CO chemisorptions, and investigated in the hydrodechlorination of tetrachloromethane. Three Pt-rich, Pt–Au/Al2O3 catalysts (Pt100, Pt95Au5 and Pt90Au10) showed a similar metal particle size (~2.5–2.7 nm), so observed changes in the catalytic behavior are ascribed to alloying effect, especially because a considerable degree of Pt–Au mixing was achieved in the bimetallic samples. It appeared that by introducing very small amount of gold (10 at.%) to platinum, the catalytic activity is increased. It is argued that the occurrence of this moderate synergistic effect is associated with a decreased tendency of surface chloriding when platinum is alloyed with gold. Zbigniew Kowalczyk—deceased.  相似文献   

8.
An oxygen-diluted partially premixed/oxygen-enriched supplemental combustion (ODPP/OESC) counterflow flame is studied in this paper. Flame images are obtained through experiments and numerical simulations with the GRI-Mech 3.0 chemistry. The oxygen dilution effects are revealed by comparing the flame structures and emissions with those of a premixed flame and partially premixed flame (PPF) at the same equivalence ratio (?Σ = 0.95 and ? f = 1.4). The results show that both PPF and ODPP/OESC flames have distinct double flame structures; however, the location of the premixed combustion zone and the distance between premixed/nonpremixed combustion zone are significantly different for these two cases. For the ODPP/OESC flame, the temperature in the premixed combustion zone is lower and the premixed zone itself is located farther downstream from the fuel nozzle, which leads to reduction of NO and CO emissions, as compared to those of the PPF. Therefore, by adjusting the distribution of the oxygen concentration in the premixed and nonpremixed combustion zones, the ODPP/OESC can effectively balance the chemical reaction rate in the entire combustion zone and, consequently, reduce emissions.  相似文献   

9.

Abstract  

The precursor particles for γ-Ga2O3–Al2O3 solid solutions were prepared by the coprecipitation method from aqueous solutions of Ga(NO3)3 and Al(NO3)3 with (NH4)2CO3 as a precipitant. The γ-Ga2O3–Al2O3 solid solutions were obtained by calcination of the precursor at 700 °C. In this paper, the performance of the catalysts treated with NH3 was investigated for the selective catalytic reduction (SCR) of NO with methane as a reducing agent, and it was found that γ-Ga2O3–Al2O3 catalysts treated with NH3 and subsequently annealed in air showed higher activities than the γ-Ga2O3–Al2O3 catalysts without NH3 treatment. NH3 treatment of the catalyst caused partial rearrangement of Ga3+ and Al3+ ions and increased the population of tetrahedral Ga3+ ions in the defective spinel structure.  相似文献   

10.
The reduction of NO with octane under lean conditions was examined over gold supported on alumina and titania and over alumina supported bimetallic gold–silver catalysts. The silver loading was either 1.2 or 1.9 wt% whereas 0.3, 1 or 5 wt% gold was used. The catalysts were characterized by means of EDXS, N2-adsortion, UV–Vis and TEM to correlate recorded results with different preparation methods. UV–Vis measurements indicated that gold was present in the form of fine Au particles, single Au ions and small (Au)n δ+ clusters on the catalysts and silver was mainly present in the form of single Ag ions. The highest NO to N2 reduction activity was recorded over the 0.3Au–Al2O3 catalyst. The Au–TiO2 catalysts did not result in significant NO to N2 reduction.  相似文献   

11.
12.
13.
14.
The effect of the hydroisomerization conditions of the benzene-containing fraction of catalytic reforming gasoline on the yield and composition of products is studied on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts. These catalysts allow benzene to be completely removed from the raw material. At the same time, the greatest yields of liquid products are obtained with minimal losses of the octane number at 2 MPa, a mass feedstock hourly space velocity (MFHSV) of 2 h?1, and 325°C: 96.3 and 95.4 wt % on Pt/B2O3–Al2O3 and Pt/WO3–Al2O3 catalysts, respectively. The activity of the catalysts is maintained for 100 h during their operation.  相似文献   

15.
Nanosized La1–xDyxPO4 · nH2O powders are synthesized by the sol-gel method using direct and reverse precipitation. The formation of a continuous series of hexagonal solid solutions based on LaPO4 · nH2O is confirmed by the XRD and DSC/TG methods. A continuous series of monoclinic solid solutions based on LaPO4 is formed at temperatures higher than 600°C. A reflex corresponding to a tetragonal form of DyPO4 is formed during the calcination of DyPO4 powder at 850°C. Two types of solid solutions are observed at temperatures of 1000–1200°C, namely, monoclinic solutions based on LaPO4 (to x ≈ 0.7) and tetragonal solutions based on DyPO4 (0.90 ≤ x ≤ 1.0). The results are compared depending on the methods of nanopowder synthesis.  相似文献   

16.
A study has been made on the effects of the amount of silicon nitride and graphite on the physicomechanical properties of Al2O3–Si3N4–C composites for lining purposes. Adding 2.5–5.0 wt.% silicon nitride and 0.5 wt.% reactive alumina improves the properties, raises their apparent density, and increases the mechanical strength, while reducing the open porosity. Optimized compositions have been determined for refractory materials of Al2O3–Si3N4–C composition, and it has been found that to attain the higher values of physicomechanical properties the amount of graphite should constitute 5–10 wt.%.  相似文献   

17.
18.
19.
A facile synthetic route for preparing silver-doped maghemite (Ag–γ-Fe2O3) nanocomposite via a modified co-precipitation method was developed. The prepared magnetic nanocomposite was characterized by means of thermal analysis, transmission electron microscope, X-Ray diffraction, vibrating sample magnetometer and Fourier transform infrared techniques. The characterization results showed that the prepared Ag–γ-Fe2O3 nanocomposite is nanocrystalline and 6–8 nm in size with superparamagnetic behavior. The synthesized Ag–γ-Fe2O3 nanocomposite showed exceptional catalytic activities towards reduction of nitroaromatic compounds with specific activities parameters of 1441.7 and 904.2 s??1 gAg?1 for both 4-nitrophenol and 2-nitroaniline, respectively. Besides, it shows a superior activity for catalytic degradation of methyl orange. All the three catalytic reactions were carried out in aqueous medium at room temperature and in the presence of reducing agent NaBH4. The magnetic behavior of the synthesized Ag–γ-Fe2O3 enables the ease of separation of the nanocomposite from the reaction medium for further reuse.

Graphical Abstract

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号