首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RX算法和核RX算法能很好地分离目标和背景,是较为广泛使用的异常检测算法,但是高光谱图像数据量大且存在冗余信息和噪声,直接进行RX及核RX异常探测运算量大且容易受噪声影响.针对此问题,提出一种基于最小噪声分离变换的高光谱图像异常检测方法,首先采用残差分析法估计噪声协方差矩阵以改进最小噪声分离变换,然后利用改进后的最小噪声分离变换来有效地降低高光谱图像数据的维数并分离出噪声,最后对低维降噪后的数据进行RX及核RX异常检测,避免了随机噪声对RX及核RX异常检测结果的影响并提高了异常检测率.对真实的AVIRIS数据测试表明,该算法优于传统的相应的RX、核RX异常检测算法.  相似文献   

2.
In the field of hyperspectral image processing, anomaly detection (AD) is a deeply investigated task whose goal is to find objects in the image that are anomalous with respect to the background. In many operational scenarios, detection, classification and identification of anomalous spectral pixels have to be performed in real time to quickly furnish information for decision-making. In this framework, many studies concern the design of computationally efficient AD algorithms for hyperspectral images in order to assure real-time or nearly real-time processing. In this work, a sub-class of anomaly detection algorithms is considered, i.e., those algorithms aimed at detecting small rare objects that are anomalous with respect to their local background. Among such techniques, one of the most established is the Reed–Xiaoli (RX) algorithm, which is based on a local Gaussian assumption for background clutter and locally estimates its parameters by means of the pixels inside a window around the pixel under test (PUT). In the literature, the RX decision rule has been employed to develop computationally efficient algorithms tested in real-time systems. Initially, a recursive block-based parameter estimation procedure was adopted that makes the RX processing and the detection performance differ from those of the original RX. More recently, an update strategy has been proposed which relies on a line-by-line processing without altering the RX detection statistic. In this work, the above-mentioned RX real-time oriented techniques have been improved using a linear algebra-based strategy to efficiently update the inverse covariance matrix thus avoiding its computation and inversion for each pixel of the hyperspectral image. The proposed strategy has been deeply discussed pointing out the benefits introduced on the two analyzed architectures in terms of overall number of elementary operations required. The results show the benefits of the new strategy with respect to the original architectures.  相似文献   

3.
Hyperspectral image (HSI), which can record abundance information of a pixel, has shown huge potential on many applications such as image classification, target and anomaly detection and so on. Nowadays, anomaly detection has attracted more attention because there is no limitation of spectral library. A standard approach for anomaly detection is the method developed by Reed and Xiaoli, called RX algorithm. However, the data volume is getting bigger with the developing of imaging technology. A problem that ensues is the rapid increase of computation complexity and this will lead a time-consumed application. In addition, there will be noise in HSI with the influence of illumination and atmospheric. In this paper, we realize an implementation of RX algorithm on NVIDIA GeForce 1060 GPU with the utilization of derivative features. On one hand, the GPU parallel implementation reach the purpose of real-time processing and it also eliminates the storage burden of on-board processing. On the other hand, the derivative features have better performance on salient features detection and noise restraint. Thus, it can further promote the detection performance of RXD. In our experiments, three real HSI datasets were tested to verify the effect of GPU parallel implementation. The experiment results had indicated that the utilization of derivative features can promote the detection performance. Compared with serial computation, the parallel implementation achieves a great reduction on processing time.  相似文献   

4.
With recent advances in hyperspectral imaging sensors, subtle and concealed targets that cannot be detected by multispectral imagery can be identified. The most widely used anomaly detection method is based on the Reed–Xiaoli (RX) algorithm. This unsupervised technique is preferable to supervised methods because it requires no a priori information for target detection. However, two major problems limit the performance of the RX detector (RXD). First, the background covariance matrix cannot be properly modelled because the complex background contains anomalous pixels and the images contain noise. Second, most RX-like methods use spectral information provided by data samples but ignore the spatial information of local pixels. Based on this observation, this article extends the concept of the weighted RX to develop a new approach called an adaptive saliency-weighted RXD (ASW-RXD) approach that integrates spectral and spatial image information into an RXD to improve anomaly detection performance at the pixel level. We recast the background covariance matrix and the mean vector of the RX function by multiplying them by a joint weight that in fuses spectral and local spatial information into each pixel. To better estimate the purity of the background, pixels are randomly selected from the image to represent background statistics. Experiments on two hyperspectral images showed that the proposed random selection-based ASW RXD (RSASW-RXD) approach can detect anomalies of various sizes, ranging from a few pixels to the sub-pixel level. It also yielded good performance compared with other benchmark methods.  相似文献   

5.
传统高光谱异常检测算法由于背景信息估计不准确等原因普遍存在高虚警率的问题,针对这一现象,提出了一种利用图像均值进行匹配改进的高光谱异常目标检测后验处理方法。首先采用传统的高光谱异常检测算法将待检测高光谱图像划分为背景与异常目标潜在区域,之后通过对待测图像求解均值,将其与异常目标潜在区域像元进行相似性匹配计算,剔除大范围误检像元,得到最终检测结果。该方法在传统异常目标检测算法基础上进行相似度量剔除大范围虚警像元,在提高原算法探测能力的同时有效地降低虚警率。实验表明,该方法可以有效降低虚警率,提高原算法对于亚像元异常目标的检测能力,且对于不同算法、不同数据具有普适性。  相似文献   

6.
The rapid development of space and computer technologies allows for the possibility to store huge amounts of remotely sensed image data, collected using airborne and satellite instruments. In particular, NASA is continuously gathering high‐dimensional image data with Earth observing hyperspectral sensors such as the Jet Propulsion Laboratory's airborne visible–infrared imaging spectrometer (AVIRIS), which measures reflected radiation in hundreds of narrow spectral bands at different wavelength channels for the same area on the surface of the Earth. The development of fast techniques for transforming massive amounts of hyperspectral data into scientific understanding is critical for space‐based Earth science and planetary exploration. Despite the growing interest in hyperspectral imaging research, only a few efforts have been devoted to the design of parallel implementations in the literature, and detailed comparisons of standardized parallel hyperspectral algorithms are currently unavailable. This paper compares several existing and new parallel processing techniques for pure and mixed‐pixel classification in hyperspectral imagery. The distinction of pure versus mixed‐pixel analysis is linked to the considered application domain, and results from the very rich spectral information available from hyperspectral instruments. In some cases, such information allows image analysts to overcome the constraints imposed by limited spatial resolution. In most cases, however, the spectral bands collected by hyperspectral instruments have high statistical correlation, and efficient parallel techniques are required to reduce the dimensionality of the data while retaining the spectral information that allows for the separation of the classes. In order to address this issue, this paper also develops a new parallel feature extraction algorithm that integrates the spatial and spectral information. The proposed technique is evaluated (from the viewpoint of both classification accuracy and parallel performance) and compared with other parallel techniques for dimensionality reduction and classification in the context of three representative application case studies: urban characterization, land‐cover classification in agriculture, and mapping of geological features, using AVIRIS data sets with detailed ground‐truth. Parallel performance is assessed using Thunderhead, a massively parallel Beowulf cluster at NASA's Goddard Space Flight Center. The detailed cross‐validation of parallel algorithms conducted in this work may specifically help image analysts in selection of parallel algorithms for specific applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
针对RX算法中局部背景协方差矩阵估计的局限性,提出一种改进的RX (I-RX)异常检测算法。基于奇异值分解(SVD),将高光谱图像投影到背景的正交子空间上,获得仅包含噪声和异常的残留图像。在此基础上,通过计算各样本的空间秩深度将残留图像划分为噪声背景和潜在异常两个样本集,利用噪声背景集估计整幅图像的背景协方差矩阵,并将潜在异常集作为测试样本进行异常检测。对模拟数据和真实高光谱数据进行了实验仿真,ROC曲线表明,在相同的虚警概率下,I-RX算法的检测概率相较于RX平均提高了2倍左右。  相似文献   

8.
Anomaly detection (AD) from remotely sensed multi-hyperspectral images is a powerful tool in many applications, such as strategic surveillance and search and rescue operations. In a typical operational scenario, an airborne hyperspectral sensor searches a wide area to identify regions that may contain potential targets. These regions typically cue higher spatial-resolution sensors to provide target recognition and identification. While this procedure is mostly automated, an on-board operator is generally assigned to examine in real time the AD output and select the regions of interest to be sent for cueing. Real-time enhancement of local anomalies in images of the over flown scene can be presented to the operator to facilitate the decision-making process. Within this framework, one of the ultimate research interests is undoubtedly the design of complexity-aware AD algorithm architectures capable of assuring real-time or nearly real-time in-flight processing and prompt decision making. Among the different AD algorithms developed, this work focuses on those AD algorithms aimed at detecting small rare objects that are anomalous with respect to their local background. One of such algorithms, called RX algorithm, is based on a local Gaussian assumption for background and locally estimates its parameters from each pixel local neighborhood. RX has been recognized to be the benchmark AD algorithm for detecting local anomalies in multi-hyperspectral images. RX decision rule has been employed to develop computationally efficient algorithms tested in real-time operating systems. These algorithms rely upon a recursive block-based parameter estimation procedure that makes their processing and, in turn, their detection performance differ from those of original RX. In this paper, a complexity-aware algorithm architecture fully adaptable to real-time processing is presented that allows the computational load to be reduced with respect to original RX, while strictly following its original formulation and thus assuring the same detection performance. An experimental study is presented that analyzes in detail the complexity reduction, in terms of number of elementary operations, offered by the proposed architecture with respect to original RX. A real hyperspectral image of a scene with deployed targets has been employed to perform a case-study analysis of the complexity reduction to be experienced in different operational scenarios. The real data are also adopted to illustrate a possible strategy for on-board line-by-line enhanced visualization of anomalies for decision support.  相似文献   

9.
A system for learning statistical motion patterns   总被引:3,自引:0,他引:3  
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.  相似文献   

10.
有效的波段选择方法可以极大地提高高光谱图像处理速度的同时改善处理效果。为了自动判断低信噪比波段,提出了一种基于小波变换的图像信噪比估计(SNR estimation,SNRE)方法,利用小波变换后对角方向上的高频成分估计噪声方差并计算信噪比。将该方法分别结合基于方差和相关系数(V_COR)的最优索引指数、最大信息量(MI)、高阶矩(偏度或峰度)结合信息散度(K3_KL)等3种基于信息量的波段选择方法后选择波段。将这些改进后的波段选择方法应用于高光谱异常检测。实验结果表明SNRE预选波段结合MI和K3_KL选择波段用于异常检测能进一步提高检测精度。  相似文献   

11.
An important application in remote sensing using hyperspectral imaging system is the detection of anomalies in a large background in real-time. A basic anomaly detector for hyperspectral imagery that performs reasonaly well is the RX detector. In practice, the subspace RX (SSRX) detector which deletes the clutter subspace has been known to perform better than the RX detector. In this paper an anomaly detector that can do better than the SSRX detector without having to delete the clutter subspace is developed. The anomaly detector partials out the effect of the clutter subspace by predicting the background using a linear combination of the clutter subspace. The Mahalanobis distance of the resulting residual is defined as the anomaly detector. The coefficients of the linear combination are chosen to maximize a criterion based on squared correlation. The experimental results are obtained by implementing the anomaly detector as a global anomaly detector in unsupervised mode with background statistics computed from hyperspectral data cubes with wavelengths in the visible and near-infrared range. The results show that the anomaly detector has a better performance than the SSRX detector. In conclusion, the anomaly detector that is based on partialling out can achieve better performance than the conventional anomaly detectors.  相似文献   

12.
In this paper, we consider the problem of multichannel restoration. Current multichannel least squares restoration filters assume the separability of the signal covariance, which describes the between‐channel and within‐channel relationships. We propose a new solution for a multichannel restoration scheme, the Adaptive Linear Minimum Mean Square Error (ALMMSE), based on a local signal model, without the hypothesis of spectral and spatial separability. The proposed filter is developed to be used as a preprocessing step for detection in hyperspectral imagery. Tests on real data show that the proposed filter enables us to enhance detection performance in target detection and anomaly detection applications with the well‐known hyperspectral imagery detection algorithms AMF and RX. The comparison with detection results, after classical restoration methods, shows the superiority of the proposed approach for hyperspectral images.  相似文献   

13.
目的 高光谱遥感中,通常利用像素的光谱特征来区分背景地物和异常目标,即通过二者之间的光谱差异来寻找图像中的异常像元。但传统的异常检测算法并未有效挖掘光谱的深层特征,高光谱图像中丰富的光谱信息没有被充分利用。针对这一问题,本文提出结合孪生神经网络和像素配对策略的高光谱图像异常检测方法,利用深度学习技术提取高光谱图像的深层非线性特征,提高异常检测精度。方法 采用像素配对的思想构建训练样本,与原始数据集相比,配对得到的新数据集数量呈指数增长,从而满足深度网络对数据集数量的需求。搭建含有特征提取模块和特征处理模块的孪生网络模型,其中,特征处理模块中的卷积层可以专注于提取像素对之间的差异特征,随后利用新的训练像素对数据集进行训练,并将训练好的分类模型固定参数,迁移至检测过程。用滑动双窗口策略对测试集进行配对处理,将测试像素对数据集送入网络模型,得到每个像素相较于周围背景像素的差异性分数,从而识别测试场景中的异常地物。结果 在异常检测的实验结果中,本文提出的孪生网络模型在San Diego数据集的两幅场景和ABU-Airport数据集的一幅场景上,得到的AUC (area under the curve)值分别为0.993 51、0.981 21和0.984 38,在3个测试集上的表现较传统方法和基于卷积神经网络的异常检测算法具有明显优势。结论 本文方法可以提取输入像素对的深层光谱特征,并根据其特征的差异性,让网络学习到二者的区分度,从而更好地赋予待测像素相对于周围背景的异常分数。本文方法相对于卷积神经网络的异常检测方法可以有效地降低虚警,与传统方法相比能够更加明显地突出异常目标,提高了检测率,同时也具有较强的鲁棒性。  相似文献   

14.
高光谱图像空间分辨率不足容易导致异常检测虚警率过高,针对此提出了一种新的异常检测算法。算法首先利用主成分分析PCA对低分辨率高光谱图像进行主成分提取,然后对所提取的主成分和高分辨率图像分别进行IHS变换,分别得到各自的强度分量。运用IHS变换的可逆性,将高光谱数据新的强度分量与原色度分量H和饱和度分量S进行IHS逆变换,得到空间信息增强的高光谱图像数据,最后使用改进的KwRX算法对空间信息增强的高光谱图像数据进行异常检测。仿真实验表明,与KRX算法、PCA-KRX算法相比,本算法在检测目标像素数和虚警个数上都有较大的改善,说明了本算法的的有效性和可行性。  相似文献   

15.
The large volume of data and computational complexity of algorithms limit the application of hyperspectral image classification to real-time operations. This work addresses the use of different parallel processing techniques to speed up the Markov random field (MRF)-based method to perform spectral-spatial classification of hyperspectral imagery. The Metropolis relaxation labelling approach is modified to take advantage of multi-core central processing units (CPUs) and to adapt it to massively parallel processing systems like graphics processing units (GPUs). The experiments on different hyperspectral data sets revealed that the implementation approach has a huge impact on the execution time of the algorithm. The results demonstrated that the modified MRF algorithm produced classification accuracy similar to conventional methods with greatly improved computational performance. With modern multi-core CPUs, good computational speed-up can be achieved even without additional hardware support. The CPU-GPU hybrid framework rendered the otherwise computationally expensive approach suitable for time-constrained applications.  相似文献   

16.
嵌入式零树小波压缩算法是图像压缩技术中有效的压缩算法,但其压缩时间较长.对该算法进行了研究,并在多核机群系统下实现了该算法的并行算法,提高了算法的性能.实现了MPI和MPI+OpenMP两种并行算法,并将串行算法、MPI并行算法与MPI+OpenMP并行算法进行比较.结果显示,随着数据量的增多,MPI并行算法和MPI+OpenMP并行算法相对于串行算法的运行效率都有明显提高,其中MPI+OpenMP并行算法的效率更好.  相似文献   

17.
The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.  相似文献   

18.
目的 由于在军事和民用应用中的重要作用,高光谱遥感影像异常检测在过去的20~30年里一直都是备受关注的研究热点。然而,考虑到异常点往往藏匿于大量的背景像元之中,且只占据很少的数量,给精确检测带来了不小的挑战。针对此问题,基于异常点往往表现在高频的细节区域这一前提,本文提出了一种基于异常点粗定位和协同表示的高光谱遥感影像异常检测算法。方法 对输入的原始高光谱遥感影像进行空间维的降质操作;通过衡量降质后影像与原始影像在空间维的差异,粗略定位可能的异常点位置;将粗定位的异常点位置用于指导像元间的协同表示以重构像元;通过衡量重构像元与原始像元的差异,从而进一步优化异常检测结果。结果 在4个数据集上与6种方法进行了实验对比。对于San Diego数据集,次优算法和本文算法分别取得的AUC (area under curve)值为0.978 6和0.994 0;对于HYDICE (hyperspectral digital image collection equipment)数据集,次优算法和本文算法的AUC值为0.993 6和0.998 5;对于Honghu数据集,次优算法和本文方法的AUC值分别为0.999 2和0.999 3;对Grand Isle数据集而言,尽管本文方法以0.001的差距略低于性能第1的算法,但从目视结果图中可见,本文方法所产生的虚警目标远少于性能第1的算法。结论 本文所提出的粗定位和协同表示的高光谱异常检测算法,综合考虑了高光谱遥感影像的谱间特性,同时还利用了其空间特性以及空间信息的先验分布,从而获得异常检测结果的提升。  相似文献   

19.
A new way of implementing two local anomaly detectors in a hyperspectral image is presented in this study. Generally, most local anomaly detector implementations are carried out on the spatial windows of images, because the local area of the image scene is more suitable for a single statistical model than for global data. These detectors are applied by using linear projections. However, these detectors are quite improper if the hyperspectral dataset is adopted as the nonlinear manifolds in spectral space. As multivariate data, the hyperspectral image datasets can be considered to be low-dimensional manifolds embedded in the high-dimensional spectral space. In real environments, the nonlinear spectral mixture occurs more frequently, and these manifolds could be nonlinear. In this case, traditional local anomaly detectors are based on linear projections and cannot distinguish weak anomalies from background data. In this article, local linear manifold learning concepts have been adopted, and anomaly detection algorithms have used spectral space windows with respect to the linear projection. Output performance is determined by comparison between the proposed detectors and the classic spatial local detectors accompanied by the hyperspectral remote-sensing images. The result demonstrates that the effectiveness of the proposed algorithms is promising to improve detection of weak anomalies and to decrease false alarms.  相似文献   

20.
目的 传统图像聚类算法多利用像元的光谱信息,较少考虑图像的空间信息,容易受到噪声干扰。针对该问题,提出一种整合超像元分割(SLIC)和峰值密度(DP)的高光谱图像聚类算法。方法 首先,利用超像元分割技术对高光谱图像进行分割并提取超像元光谱特征;然后,根据提取的超像元光谱特征,计算其峰值密度信息,搜索超像元光谱簇,构建像元与类别间的隶属度关系。最后,利用高光谱模拟数据以及两组真实高光谱图像评价算法的鲁棒性和精度。结果 在不同信噪比的模拟数据中,SLIC-DP算法在调整芮氏指标(ARI)最优的条件下,较K-means和SLIC-Kmeans的方差降低61.86%和41.61%,体现优越的鲁棒性。在高光谱数据集Salinas-A和Indian Pines中,SLIC-DP算法的ARI为0.777 1和0.325 7,较K-Means和SLIC-KMeans聚类算法分别增长10.71%,5.01%与78.86%,25.27%。结论 本文算法抗噪声能力强,充分利用空间信息与光谱信息,有效提升高光谱图像聚类精度。经验证,能满足高光谱图像信息提取和分析的要求,可进一步推广和研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号