首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the properties of nanocrystalline ZrO2〈3 mol % Y2O3〉 and 90 wt % ZrO2〈3 mol % Y2O3〉-10 wt % Al2O3 powders prepared via hydrothermal treatment of coprecipitated hydroxides at 210°C. The results demonstrate that Al2O3 doping raises the phase transition temperatures of the metastable low-temperature ZrO2 polymorphs and that the structural transformations of the ZrO2 and Al2O3 in the doped material inhibit each other.  相似文献   

2.
A novel spray co-precipitation method was adopted to synthesize well dispersed nanocrystalline Y2O3 powders for transparent ceramics. Several analytic techniques such as XRD, SEM, BET and UV–Vis–NIR spectrophotometer were used to determine the properties of coprecipitated powders, and the microstructure and optical properties of as-fabricated ceramics. The influences of the aging time on powders and ceramics were systematically investigated. Precursors were completely reached to yield the Y2O3 phase after being calcined at 1250 °C in air. The calcined Y2O3 powders exhibited an approximately spherical morphology with narrow size distribution and weak agglomeration, with mean particle size of ~140 nm. The co-precipitated nanopowders with an aging time of 12 h exhibited the best sintering activity due to the low agglomeration, and the in-line transmittance of Y2O3 ceramic sintered at 1800 °C for 8 h in vacuum reached to 77.2% at 1064 nm (1 mm thickness).  相似文献   

3.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

4.
A technique has been developed for the self-propagating high-temperature synthesis of lutetium oxide (Lu2O3) powders using citric acid, glycine, and lutetium acetate as fuels. We have carried out thermodynamic analysis of synthesis conditions and examined the effect of the nature of the fuel on the properties of the resultant powders. Using vacuum sintering at a temperature of 1780°C and powders prepared with glycine as a fuel and containing 25 mol % yttrium oxide and 5 mol % lanthanum oxide as sintering aids, we have obtained transparent lutetium oxide-based ceramics.  相似文献   

5.
Using electrophoretic deposition (EPD), we have produced YSZ individual ceramic coatings and YSZ/Al2O3 composite coatings for a wide range of applications in modern materials research. YSZ and Al2O3 nanopowders were prepared by high-energy physical dispersion techniques, namely, by a laser evaporation–condensation process and electroexplosion of wire, respectively. Stable nonaqueous suspensions for the EPD process have been prepared using YSZ and Al2O3 nanopowders with an average particle size of 11 and 22 nm, respectively. The YSZ/Al2O3 composite coating produced by sintering at 1200°C has been shown to have higher density in comparison with the YSZ individual coating produced at the same temperature. X-ray diffraction characterization showed that the YSZ/Al2O3 composite coating consisted of two crystalline phases: α-Al2O3 (corundum) (42 wt %) and cubic ZrO2〈Y2O3〉 (58 wt %). Quantitative analysis of electron micrographs of the surface of the films showed that the YSZ individual coating produced by sintering at 1200°C had a loose structure and contained pores (9%), as distinct from the composite coating, which had a dense, porefree grain structure.  相似文献   

6.
Biologically derived hydroxyapatite from calcinated (at 850 °C) bovine bones (BHA) was doped with 5 wt% and 10 wt% of SiO2, MgO, Al2O3 and ZrO2 (stabilized with 8% Y2O3). The aim was to improve the sintering ability and the mechanical properties (compression strength and hardness) of the resultant BHA-composites. Cylindrical samples were sintered at several temperatures between 1,000 and 1,300 °C for 4 h in air. The experimental results showed that sintering generally occurs at 1,200 °C. The BHA–MgO composites showed the best sintering performance. In the BHA–SiO2 composites, extended formation of glassy phase occurred at 1,300 °C, resulting in structural degradation of the resultant samples. No sound reinforcement was achieved in the case of doping with Al2O3 and zirconia probably due to the big gap between the optimum sintering temperatures of BHA and these two oxides.  相似文献   

7.
We have studied the effect of composition and growth conditions on the structure and properties of 2.5–5 mol % Y2O3 partially stabilized ZrO2 crystals grown by directional solidification in a cold-wall crucible. The phase composition and density of the crystals have been determined. The crystals are shown to be uniform in composition, with local changes in Y2O3 content within ±0.5 mol %. The dimensions and quality of the single crystals are influenced by the growth conditions.  相似文献   

8.
Crack propagation through layered Al2O3/ZrO2 composites was studied. The specimens were prepared via electrophoretic deposition of alumina and zirconia powders from suspensions with monochloroacetic acid and isopropanol. The kinetics of electrophoretic deposition could be described fully if the electrophoretic mobility and conductivity of suspensions were known. The conductivity of suspensions increased in the course of deposition. Adjusting to properly controlled kinetics of deposition and sintering, deposits were prepared with strongly bonded layers of different pre-defined thicknesses and, consequently, with different magnitudes of residual stress. Cracks, produced by an indentation technique, propagated askew towards layer interfaces deflected towards the interface in the Al2O3 layers and away from the interface in the ZrO2 layers. Changes in the direction of crack propagation were described for the whole range of angles of incidence (0°–90°). The biggest change in the crack propagation was observed for the angle of incidence 45° and was ca. 15°, irrespective of the magnitude of residual stress in the layers.  相似文献   

9.
Oxides of the type, Ba3-xSrxZnNb2O9 (0 ≤x ≤3), were synthesized by the solid state route. Oxides calcined at 1000°C show single cubic phase for all the compositions. The cubic lattice parameter (a) decreases with increase in Sr concentration from 4.0938(2) forx = 0 to 4.0067(2) forx = 3. Scanning electron micrographs show maximum grain size for thex = 1 composition (∼ 2 μm) at 1200°C. Disks sintered at 1200°C show dielectric constant variation between 28 and 40 (at 500 kHz) for different values of x with the maximum dielectric constant atx = 1.  相似文献   

10.
Apatite-type La9.33(SiO4)6O2 powders have been prepared by urea-nitrates combustion at low temperature. Process parameters of combustion and characteristics of electrolyte were studied and optimized. Gelation time of precursor has been shortened distinctly by introducing an appropriate solvent system. Molar ratio of nitric acid to lanthanum oxide dependence of the nature of the phases has first been characterized. Well-crystallized La9.33(SiO4)6O2 powders with an average size of 30.5 nm were obtained at a calcining temperature as low as 800°C for 12h. Dense ceramic with a relative density of 96% was prepared by sintering the green compact of these nanopowders at 1400°C for 3 h. The sintering body exhibited a high ionic conductivity of 4.38 × 10−3 S/cm at 700°C.  相似文献   

11.
The formation behavior of CaCu3Ti4O12 (CCTO) had been investigated via solid state reaction from CaTiO3, CuO and TiO2 powders. In the temperature range from 750 to 1,200 °C, the reaction sequence was traced by XRD, and the microstructure evolution of calcined powders was also investigated by SEM. CCTO began to form owing to the reaction between CaTiO3, CuO and TiO2 at around 850 °C, and became the major phase at 1,000 °C. Finally, the single phase CCTO was obtained at 1,150 °C. However, CCTO was decomposed at CaTiO3, CuO and TiO2 when the temperature increased to 1,200 °C. In addition, no other intermediate phases occurred in the synthesized process. The formation behaviors indicated that CaTiO3 prevented the formation and growth of CCTO.  相似文献   

12.
High-energy milling of Al2O3 with hardened steel milling media has confirmed that nanocrystalline powders are readily formed. At a ball to charge mass-ratio of 20:1, the crystallite size falls below 30 nm in just 2 h and below 15 nm in 4 h. The as-milled powders are contaminated with Fe which increases linearly with increased milling time, reaching ∼10 wt% after 16 h. The HCl leaching process of Karagedov and Lyakhov [Karagedov and Lyakhov (1999) Nanostruct Mater 11(5):559] was found to remove a large proportion of the Fe, but residual Fe was found with XRF analysis. Milled and leached samples show significant sintering temperature depression to approximately 1100 °C and produce sintered densities greater than 94% without the application of pressure. Milling induced lattice expansion of the Al2O3 is observed which we posit to be due to defect formation rather than Fe absorption. The respective roles of small crystallite size and lattice defects in reducing the sintering temperature are discussed.  相似文献   

13.
Nanocrystalline Lu2O3-TiO2 (33.3–44 mol % Lu2O3) materials with a partially disordered pyrochlore structure, prepared via heat treatment in the range 1400–1750°C, are found to possess high oxygen ionic conductivity. Their 740°C conductivity is 10-3 to 10-2 S/cm, depending on the heat-treatment temperature and composition, which is comparable to that of the well-known fluorite solid electrolyte ZrO2-9 mol % Y2O3.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 324–331.Original Russian Text Copyright © 2005 by Shlyakhtina, Mosunov, Stefanovich, Knotko, Karyagina, Shcherbakova.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

14.
The ZrO2-TiO2 phase diagram was determined experimentally between 800 and 1200°C, 1 atm, extending our knowledge of this system to temperatures previously inaccessible for equilibrium experiments due to sluggish kinetics. The crystallization of the ordered (Zr,Ti)2O4 phase from the oxides was facilitated by the addition of flux (CuO or Li2MoO4/MoO3), and seeds. Two ordered (Zr,Ti)2O4 phases with different compositions were identified, and their phase relationships with TiO2 and ZrO2 solid solutions investigated. Structure data, superstructure reflections and composition were used to locate the ordering phase transition of (Zr,Ti)2O4 in equilibrium with ZrO2 and TiO2. At the onset of ordering between 1130 and 1080°C, (Zr,Ti)2O4 is of composition XTi = 0.495 ± 0.02, and displays a dramatic change in b-dimension. At 1060°C and below, the composition of (Zr,Ti)2O4 is significantly more Ti-rich and dependent on temperature, ranging from XTi = 0.576 at 1060°C to 0.658 at 800°C. This variability in composition of the ordered phase contrasts with previous studies that suggested the composition to be constant at either XTi = 0.667 [ZrTi2O6] or 0.583 [Zr5Ti7O24]. When grown at low temperatures and with lithium molybdate, the crystals of ordered (Zr,Ti)2O4 are acicular to needle shape, and develop distinct square cross-sections and end facets.  相似文献   

15.
A novel method was introduced to prepare open-cell Al2O3–ZrO2 ceramic foams with controlled cell structure. This method used epispastic polystyrene (EPS) spheres to array ordered templates and centrifugal slip casting in the interstitial spaces of the EPS template to obtain cell struts with high packing density. Aqueous Al2O3–ZrO2 slurries with up to 50 vol.% solid contents were prepared and centrifuged at acceleration of 2,860g. The effect of the solid contents of slurries on segregation phenomena of different particles and green compact uniformity were investigated. In multiphase system, the settling velocities of Al2O3 and ZrO2 particles were calculated. Theory analysis and calculated results both indicated segregation phenomenon was hindered for slurries with 50 vol.% solid content. The cell struts of sintered products had high green density (61.5%TD), sintered density (99.1%TD) and homogeneous microstructures after sintered at 1,550 °C for 2 h. The cell size and porosity of Al2O3–ZrO2 ceramic foams can be adjusted by changing the size of EPS spheres and the load applied on them during packing, respectively. When the porosity increased from 75.3% to 83.1%, the compressive strength decreases from 3.82 to 2.07 MPa.  相似文献   

16.
We have studied phase formation processes during heat treatment of precipitates in the ZrO2-Al2O3 and ZrO2-CeO2-Al2O3 systems. During heat treatment of powders prepared by coprecipitation of precursors to ZrO2, CeO2, and Al2O3, α-Al2O3 is formed at higher temperatures, which is due to the formation and decomposition of T-ZrO2 and metastable Al2O3 phases. The precipitation sequence in the ZrO2-CeO2-Al2O3 system influences the lattice parameters of the forming T-ZrO2-based solid solutions because of the different degrees of Ce4+ and Al3+ substitutions for Zr4+.  相似文献   

17.
SiC reticulated porous ceramics (SiC RPCs) was fabricated with polymer replicas method by using MgO–Al2O3–SiO2 additives as sintering aids at 1,000∼1,450 °C. The MgO–Al2O3–SiO2 additives were from alumina, kaolin and Talc powders. By employing various experimental techniques, zeta potential, viscosity and rheological measurements, the dispersion of mixed powders (SiC, Al2O3, talc and kaolin) in aqueous media using silica sol as a binder was studied. The pH value of the optimum dispersion was found to be around pH 10 for the mixtures. The optimum condition of the slurry suitable for impregnating the polymeric sponge was obtained. At the same time, the influence of the sintering temperature and holding time on the properties of SiC RPCs was investigated. According to the properties of SiC RPCs, the optimal sintering temperature was chosen at 1,300 °C, which was lower than that with Al2O3–SiO2 additives as sintering aids.  相似文献   

18.
The structure of partially stabilized zirconia crystals has been studied by transmission electron microscopy before and after annealing. Structural characterization of Y2O3-doped (2.8 to 4 mol %) zirconia before annealing showed that all of the samples consisted of twin domains whose size was dependent on the stabilizer content. Annealing at 2100°C increased the domain size in the composition range 2.8–3.7 mol % Y2O3 and reduced it at 4 mol % Y2O3. These structural changes allowed us to determine the position of the representative point relative to the phase boundary in the equilibrium phase diagram of the system.  相似文献   

19.
The microstructure, electrical properties, and DC-accelerated aging behavior of the ZnO-V2O5-Mn3O4 ceramics were investigated at different sintering temperatures of 850–925°C. The microstructure of the ZnO-V2O5-Mn3O4 ceramics consisted of ZnO grain as a primary phase, and Zn3(VO4)2 which acts as a liquid-phase sintering aid, in addition to Mn-rich phase as secondary phases. The maximum value (3,172 V/cm) and minimum value (977 V/cm) of breakdown field were obtained at sintering temperature of 850 and 900°C, respectively. The nonlinear coefficient exhibited the highest value, reaching 30 at 925°C and the lowest value, reaching 4 at 850°C. The optimum sintering temperature was 900°C, which exhibited not only high nonlinearity with 24 in nonlinear coefficient, but also the high stability, with %ΔE1mA = −0.9% and %∆α = −12.5% for DC-accelerated aging stress of 0.85 E1mA/85°C/24 h.  相似文献   

20.
We have studied the effect of hot-pressing conditions (different pressure rise rates and isothermal holding temperatures in the range 1450–1550°C) on the microstructure of ceramics produced from nanopowder with the composition Ce0.09Zr0.91O2/MgAl6O10/γ-Al2O3 (20.6, 37.4, and 42.0 wt %, respectively). Firing at 1450°C for 1 h made it possible to obtain fine-grained ceramics with less than 3 μm in grain size. The compaction pressure rise rate was shown to be a key parameter under such thermal conditions (20 + 10°C/min → 1450°C). Grain growth was prevented most effectively when the maximum load, 30 MPa, was reached at a temperature of 1000°C. Under such conditions, the grain size was 0.4–0.8 μm and the relative density reached 98.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号