首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cutoff frequency, fT, of 85 GHz was measured on a fully-depleted silicon-on-insulator (FDSOI) n-MOSFET with a gate length of 0.15 μm. The p-MOSFET with 0.22-μm gate length has an fT of 42 GHz. The high-frequency equivalent circuits were derived from scattering parameters for MOSFETs with various gate lengths. The effects of gate length and other device parameters on the performance of FDSOI MOSFETs at RF are discussed  相似文献   

2.
First dc, small signal, and RF power characteristics of GaN/InGaN doped-channel heterojunction field effect transistors (HFETs) are reported. HFETs with a 1-μm gate length have demonstrated a maximum drain current of 272 mA/mm, a flat Gm around 65 mS/mm in a V GS between -0.65 V and +2.0 V, and an on-state breakdown voltage over 50 V. Complete pinchoff was observed for a -3.5 V gate bias. Devices with a 1-μm gate length have exhibited an fT of 8 GHz and fmax of 20 GHz. A saturated output power of 26 dBm was obtained at 1.9 GHz for a 1 μm×1 mm device  相似文献   

3.
High performance p-type modulation-doped field-effect transistors (MODFET's) and metal-oxide-semiconductor MODFET (MOS-MODFET) with 0.1 μm gate-length have been fabricated on a high hole mobility SiGe-Si heterojunction grown by ultrahigh vacuum chemical vapor deposition. The MODFET devices exhibited an extrinsic transconductance (gm) of 142 mS/mm, a unity current gain cut-off frequency (fT) of 45 GHz and a maximum oscillation frequency (fMAX) of 81 GHz, 5 nm-thick high quality jet-vapor-deposited (JVD) SiO2 was utilized as gate dielectric for the MOS-MODFET's. The devices exhibited a lower gate leakage current (1 nA/μm at Vgs=6 V) and a wider gate operating voltage swing in comparison to the MODFET's. However, due to the larger gate-to-channel distance and the existence of a parasitic surface channel, MOS-MODFET's demonstrated a smaller peak g m of 90 mS/mm, fT of 38 GHz, and fmax of 64 GHz. The threshold voltage shifted from 0.45 V for MODFET's to 1.33 V for MOS-MODFET's. A minimum noise figure (NFmin) of 1.29 dB and an associated power gain (Ga) of 12.8 dB were measured at 2 GHz for MODFET's, while the MOS-MODFET's exhibited a NF min of 0.92 dB and a Ga of 12 dB at 2 GHz. These DC, RF, and high frequency noise characteristics make SiGe/Si MODFET's and MOS-MODFET's excellent candidates for wireless communications  相似文献   

4.
We successfully fabricated submicron depletion-mode GaAs MOSFETs with negligible hysteresis and drift in drain current using Ga2 O3(Gd2O3) as the gate oxide. The 0.8-μm gate-length device shows a maximum drain current density of 450 mA/mm and a peak extrinsic transconductance of 130 mS/mm. A short-circuit current gain cutoff frequency (fT) of 17 GHz and a maximum oscillation frequency (fmax) of 60 GHz were obtained from the 0.8 μm×60 μm device. The absence of drain current drift and hysteresis along with excellent characteristics in the submicron devices is a significant advance toward the manufacture of commercially useful GaAs MOSFETs  相似文献   

5.
Depletion-mode doped-channel field effect transistors (DCFETs) using a AlAs0.56Sb0.44/In0.53Ga0.47 As heterostructure with multiple channels grown by molecular beam epitaxy (MBE) on an InP substrate are presented. Devices with gate lengths ranging from 0.2 μm to 1.0 μm have been fabricated. Three doped In0.53Ga0.47As channels separated by undoped AlAs0.56Sb0.44 layers are used for the devices. The devices exhibit unity current gain cut-off frequencies typically between 18 GHz and 73 GHz and corresponding maximum oscillation frequencies typically between 60 GHz and 160 GHz. The multiple channel approach results in wide linearity of dc and RF performance of the device  相似文献   

6.
A novel structure Ga0.51In0.49P/GaAs MISFET with an undoped Ga0.51In0.49P layer serving as the airbridge between active region and gate pad was first designed and fabricated. Wide and flat characteristics of gm and fmax versus drain current or gate voltage were achieved. The device also showed a very high maximum current density (610 mA/mm) and a very high gate-to-drain breakdown voltage (25 V). Parasitic capacitances and leakage currents were minimized by the airbridge gate structure and thus high fT of 22 GHz and high fmax of 40 GHz for 1 μm gate length devices were attained. To our knowledge, both were the best reported values for 1 μm gate GaAs channel FET's  相似文献   

7.
It is found from measured high frequency (HF) S-parameter data that the extracted effective gate sheet resistance (Rgsh), effective gate unit-area capacitance (Cgg, unit), and transconductance (Gm) in radio-frequency (RF) MOSFETs show strong frequency dependency when the device operates at frequencies higher than some critical frequency. As frequency increases, Rgsh increases but Cgg, unit and Gm decrease. This behavior is different from what we have observed at low or medium frequencies, at which these components are constant over a frequency range. This phenomenon has been observed in MOSFETs with Lf longer than 0.35 μm at frequencies higher than 1 GHz, and becomes more serious as Lf becomes longer and the frequency higher. This behavior can be explained by a MOSFET model considering the Non-Quasi-Static (NQS) effect. Simulation results show that an RF model based on BSIM3v3 with the NQS effect describes well the behaviors of both real and imaginary parts of Y21 of the device with strong NQS effect even though its fitting to Y11 needs to be improved further  相似文献   

8.
The fabrication and characterization of high-speed enhancement-mode InAlAs/InGaAs/InP high electron mobility transistors (E-HEMTs) have been performed. The E-HEMT devices were made using a buried-Pt gate technology. Following a Pt/Ti/Pt/Au gate metal deposition, the devices were annealed in a nitrogen ambient, causing the bottom Pt layer to sink toward the channel. This penetration results in a positive shift in threshold voltage. The dc and RF performance of the devices has been investigated before and after the gate annealing process. In addition, the effect of the Pt penetration was investigated by fabricating two sets of devices, one with 25 nm of Pt as the bottom layer and the other with a 5.0 nm bottom Pt layer. E-HEMTs were fabricated with gate lengths ranging from 0.3 to 1.0 μm. A maximum extrinsic transconductance (gmext) of 701 mS/mm and a threshold voltage (VT) of 167 mV was measured for 0.3 μm gate length E-HEMTs. In addition, these same devices demonstrated excellent subthreshold characteristics as well as large off-state breakdown voltages of 12.5 V. A unity current-gain cutoff frequency (f t) of 116 GHz was measured as well as a maximum frequency of oscillation (fmax) of 229 GHz for 0.3 μm gate-length E-HEMTs  相似文献   

9.
An 0.12 μm gate length direct ion-implanted GaAs MESFET exhibiting excellent DC and microwave characteristics has been developed. By using a shallow implant schedule to form a highly-doped channel and an AsH3 overpressure annealing system to optimize the shallow dopant profile, the GaAs MESFET performance was further improved. Peak transconductance of 500 mS/mm was obtained at Ids =380 mA/mm. A noise figure of 0.9 dB with associated gain of 8.9 dB were achieved at 18 GHz. The current gain cutoff frequency fmax of 160 GHz indicates the suitability of this 0.12 μm T-gate device for millimeter-wave IC applications  相似文献   

10.
We have demonstrated the first Ga2O3(Gd2O3) insulated gate n-channel enhancement-mode In0.53Ga0.47As MOSFET's on InP semi-insulating substrate. Ga2O3(Gd2 O3) was electron beam deposited from a high purity single crystal Ga5Gd3O12 source. The source and drain regions of the device were selectively implanted with Si to produce low resistance ohmic contacts. A 0.75-μm gate length device exhibits an extrinsic transconductance of 190 mS/mm, which is an order of magnitude improvement over previously reported enhancement-mode InGaAs MISFETs. The current gain cutoff frequency, ft, and the maximum frequency of oscillation, fmax, of 7 and 10 GHz were obtained, respectively, for a 0.75×100 μm2 gate dimension device at a gate voltage of 3 V and drain voltage of 2 V  相似文献   

11.
A cutoff frequency (fT) of 11 GHz is realized in the hydrogen-terminated surface channel diamond metal-insulator-semiconductor field-effect transistor (MISFET) with 0.7 μm gate length. This value is five times higher than that of 2 μm gate metal-semiconductor (MES) FETs and the maximum value in diamond FETs at present. Utilizing CaF2 as an insulator in the MIS structure, the gate-source capacitance is reduced to half that of the diamond MESFET because of the gate insulator capacitance being in series to the surface-channel capacitance. This FET also exhibits the highest f max of 18 GHz and 15 dB of power gain at 2 GHz. The high-frequency equivalent circuits of diamond MISFET are deduced from the S-parameters obtained from RF measurement  相似文献   

12.
We report on AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor (HFET) over SiC substrates with peripheries from 0.15 to 6 mm. These multigate devices with source interconnections were fabricated using a novel oxide-bridging approach. The saturation current was as high as 5.1 A for a 6 mm wide device with a gate leakage of 1 μA/cm2 for 1.5 μm gate length in a 5 μm source-drain opening. The cutoff frequency of around 8 GHz was practically independent of the device periphery. Large-signal output rf-power as high as 2.88 W/mm was measured at 2 GHz. Both the saturation current and the rf-power scaled nearly linearly with the gate width  相似文献   

13.
The growth and fabrication of a nonalloyed delta-doped FET entirely grown by atomic layer epitaxy are reported. The DC and RF performances are shown to be comparable to similar devices fabricated on materials grown by other techniques. FETs having a gate length of 1.5 μm show transconductances as high as 144 mS/mm at a current density of 460 mA/mm. The breakdown voltage for these devices is between 20 and 25 V for a gate-to-drain spacing of 1.6 μm. An fT and fmax of 13 and 19 GHz were obtained respectively. These values are among the highest values reported for MESFETs with similar geometry  相似文献   

14.
High-frequency performance of diamond field-effect transistor   总被引:1,自引:0,他引:1  
The microwave performance of a diamond metal-semiconductor field-effect transistor (MESFET) is reported for the first time. MESFETs with a gate length of 2-3 μm and a source-gate spacing of 0.1 μm were fabricated on the hydrogen-terminated surface of an undoped diamond film grown by microwave plasma chemical vapor deposition (CVD) utilizing a self-aligned gate fabrication process. A maximum transconductance of 70 mS/mm was obtained on a 2 μm gate MESFET at VGS=-1.5 V and VDS=-5 V,for which a cutoff frequency fT and a maximum oscillating frequency fmax of 2.2 GHz and 7 GHz were obtained, respectively  相似文献   

15.
Fully ion-implanted low-noise GaAs MESFETs with a 0.11-μm Au/WSiN T-shaped gate have been successfully developed for applications in monolithic microwave and millimeter-wave integrated circuits (MMICs). In order to reduce the gate resistance, a wide Au gate head made of a first-level interconnect is employed. As the wide gate head results in parasitic capacitance, the relation between the gate head length (Lh) and the device performance is examined. The gate resistance is also precisely calculated using the cold FET technique and Mahon and Anhold's method. A current gain cutoff frequency (fT) and a maximum stable gain (MSG) decrease monotonously as Lh increases on account of parasitic capacitance. However, the device with Lh of 1.0 μm, which has lower gate resistance than 1.0 Ω, exhibits a noise figure of 0.78 dB with an associated gain of 8.7 dB at an operating frequency of 26 GHz. The measured noise figure is comparable to that of GaAs-based HEMT's  相似文献   

16.
MESFET's were fabricated using 4H-SiC substrates and epitaxy. The D.C., S-parameter, and output power characteristics of the 0.7 μm gate length, 332 μm gate width MESFET's were measured. At νds =25 V the current density was about 300 mA/mm and the maximum transconductance was in the range of 38-42 mS/mm. The device had 9.3 dB gain at 5 GHz and fmax=12.9 GHz. At Vds=54 V the power density was 2.8 W/mm with a power added efficiency=12.7%  相似文献   

17.
Temperature-dependent nonlinearities of GaN/AlGaN HEMTs are reported. The large-signal device model of the transistor is obtained by using a physics-based analysis. The model parameters are obtained as functions of bias voltages and temperature. The analysis of the device has been carried out using a time-domain technique. fmax for a 0.23 μm×100 μm Al0.13Ga0.87N/GaN FET is calculated as 69 GHz at 300 K, while at 500 K, fmax decreases to 30 GHz, which are in agreement with the experimental data within 7% error. fmax as obtained from calculated unilateral gain, decreases monotonically with increasing temperature. For shorter gate lengths irrespective of the operating temperature fmax is less sensitive to bias voltage scaling. For longer gate length devices, fmax becomes less sensitive to the bias voltage scaling at elevated temperatures. 1-dB compression point (P1-dB ) at 4 GHz for a 1 μm×500 μm Al0.15Ga0.85N/GaN FET is 13 dBm at 300 K. At 500 K, P1-dB decreases to 2.5 dBm for the same operating frequency. Similar results for output referred third intercept point (OIP3) are reported for different gate length devices  相似文献   

18.
An 80-nm InP high electron mobility transistor (HEMT) with InAs channel and InGaAs subchannels has been fabricated. The high current gain cutoff frequency (ft) of 310 GHz and the maximum oscillation frequency (fmax) of 330 GHz were obtained at VDS = 0.7 V due to the high electron mobility in the InAs channel. Performance degradation was observed on the cutoff frequency (ft) and the corresponding gate delay time caused by impact ionization due to a low energy bandgap in the InAs channel. DC and RF characterizations on the device have been performed to determine the proper bias conditions in avoidance of performance degradations due to the impact ionization. With the design of InGaAs/InAs/InGaAs composite channel, the impact ionization was not observed until the drain bias reached 0.7 V, and at this bias, the device demonstrated very low gate delay time of 0.63 ps. The high performance of the InAs/InGaAs HEMTs demonstrated in this letter shows great potential for high-speed and very low-power logic applications.  相似文献   

19.
The n-channel depletion-mode GaAs MOSFETs with a selective liquid phase chemical-enhanced oxidation method at low temperature by using metal as the mask (M-SLPCEO) are demonstrated. The proposed process can simplify one mask to fabricate GaAs MOSFET and grow reliable gate oxide films as well as side-wall passivation layers at the same time. The 1 μm gate-length MOSFET with a gate oxide thickness of 35 nm shows a transconductance of 90 mS/mm and a maximum drain current density larger than 350 mA/mm. In addition, a short-circuit current gain cutoff frequency fT of 6.5 GHz and a maximum oscillation frequency f max of 18.3 GHz have been achieved from the 1 μm×100 μm GaAs MOSFET  相似文献   

20.
The performance of InGaP-based pHEMTs as a function of gate length has been examined experimentally. The direct-current and microwave performance of pHEMTs with gate lengths ranging from 1.0-0.2 μm has been evaluated. Extrinsic transconductances from 341 mS/mm for 1.0 μm gate lengths to 456 mS/mm for 0.5 μm gate lengths were obtained. High-speed device operation has been verified, with ft of 93 GHz and fmax of 130 GHz for 0.2 μm gate lengths. The dependence of DC and small-signal device parameters on gate length has been examined, and scaling effects in InGaP-based pHEMT's are examined and compared to those for AlGaAs/InGaAs/GaAs pHEMTs. High-field transport in InGaP/InGaAs heterostructures is found to be similar to that of AlGaAs/InGaAs heterostructures. The lower ϵr of InGaP relative to AlGaAs is shown to be responsible for the early onset of short-channel effects in InGaP-based devices  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号