首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An image enhancement technique for a visualization of gas–liquid metal two-phase interfaces is developed for a real time neutron radiography (RTNR) technique, where the dynamic motion of bubbles inside liquid metal cannot be observed optically. The proposed image enhancement technique consisted of noise reduction, pipe–fluid interface determination, and image smoothing procedures. The results show that the RTNR technique is able to visualize the dynamics of gas–liquid metal interfaces, and also is able to determine more accurate two-phase flow parameters such as void fraction.  相似文献   

2.
Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for the local two-phase flow parameters were investigated. A two-conductivity probe was used for local vapor parameters and a Pitot tube for local liquid parameters. Using these probes, the distributions of phasic velocities, interfacial area concentration (IAC) and void fraction are measured in a steam-water boiling flow. In this study, it is observed that the local void fraction is smoothly decayed out from the surface of a heating rod to the channel center in subcooled boiling without any wall void peaking, which were observed in air-water experiments. The distributions of the local IAC and bubble frequency coincide with those of the local void fraction for a given area-averaged void fraction.  相似文献   

3.
The application of a novel wire-mesh sensor based on electrical capacitance (permittivity) measurements for the investigation of gas–oil two-phase flow in a vertical pipe of 67 mm diameter under industrial operating conditions is reported in this article. The wire-mesh sensor employed can be operated at up to 5000 frames per second acquisition speed and at a spatial resolution of 2.8 mm. By varying the gas and liquid flow rates, different flow patterns, such as bubbly, slug and churn flow, were produced and investigated. From the images of gas void fraction distribution, quantitative flow structure information, such as time series of cross-sectional void fraction, radial void fraction profiles and bubble size distributions, was extracted by special image-processing algorithms.  相似文献   

4.
In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.  相似文献   

5.
This paper introduces the TERT-IV prototype developed by Tianjin University. The application of the TERT-IV system to measurement parameters of two-phase flow has been studied. The methods of analyzing measured data of ERT system are presented and applied to identify flow regimes and estimate void fraction. For the several typical flow regimes, the methods of principal component analysis and artificial neural network to identify the two-phase flow regimes is presented, and that is proved to have higher recognition rate by experimental test. For the different phase distribution on a pipe cross-section, the methods of relative changes summation and polynomial regression are used to estimate void fraction, and are proved to be possible by comparing the results of simulation calculation to the analytic results of experimental measured data.The research results show that the method is feasible using feature extraction and analysis data to measure the parameters of two-phase flow under the different flow conditions, and prove that it is possible to monitor on-line the transportation process of air/water two-phase flow using ERT system.  相似文献   

6.
Counter-current two-phase flows of air-water in narrow rectangular channels with offset-strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel, respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug How, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.  相似文献   

7.
Gamma-ray tomography is a technique well suited to visualize gas void fraction distribution in two-phase flows. The liquid phase considered in this paper is a homogeneous mixture of oil and water. Gamma-ray tomography will be used to qualitatively visualize the distribution of gas in the flow, and also to provide more quantitative average void fraction measurements. The subject treatment is practical and experimental with a primary focus on multiphase sampling. Experimental results for total average void fraction are compared to the drift–flux model for two-phase flow by comparing measurements with the calculated slip.  相似文献   

8.
Flow regime identification based on local parameters of axial upward two-phase flow in vertical tube bundles, at high-temperature and high-pressure, was performed using optical probes. A staggered arrangement of the tube bundles was simulated inside a non-circular test channel, the tube size and pitch are same as that in a real steam generator of a PWR under design. Optical probes were utilized to acquire the void fraction, interface frequency, and fluctuation characteristics of the local void fraction at two typical locations (centroid of the three tubes, named op-1, and centre of the minimum gap between two tubes, named op-2). The system pressure ranged from 5 to 9 MPa, mass flux from 100 to 350 kg m−2 s−1, thermodynamic steam quality from 0 to 1, and inlet fluid temperature from 263.9 to 303.3 °C, depending on the saturation pressure. This study investigated local parameters and flow pattern characteristics of high-pressure steam-water two-phase flow in vertical tube bundles using optical probes, with the measurement error of less than 2%. Results showed that local void fraction at op-1 was much larger than that at op-2, and the local void fraction difference between op-1 and op-2 increased first and then gradually decreased, which was primarily affected by the transition in flow regimes. The flow pattern characteristics of steam-water two-phase flow were described based on three aspects, namely, variation in interface frequency with local void fraction, fluctuation characteristics of local void fraction, and statistical analysis of local void fraction deviating from the average. Additionally, the flow regime identification criteria, applicable to the steam-water two-phase flow in vertical tube bundles, were proposed based on local parameters.  相似文献   

9.
A micro wire-mesh sensor (μWMS) based on an electrical conductivity measurement between electrodes installed on the walls has been developed for gas–liquid two-phase flow measurements in a narrow rectangular channel. This measuring method applies a principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in the cross-section of the relatively large flow channel. In two-phase flow measurement using μWMS the void fraction distributions in the narrow channel were obtained by the measured conductivities between electrodes arranged on each wall. Therefore, the gas phase structures and the bubble behaviors can be investigated in the flow channel with narrow gap. In the present paper, a μWMS for the air–water flow between parallel flat plates with a gap of 3 mm was developed and simultaneous measurements with a high speed video camera were conducted to compare the measured results in bubbly flow.  相似文献   

10.
A method for air–water two-phase flow measurement is proposed using a Venturi meter combined with an Electrical Resistance Tomography (ERT) sensor. Firstly, the real-time flow pattern of the two-phase flow is identified using the ERT sensor. Secondly, the void fraction of the two-phase flow is calculated from the conductance values through a void fraction measurement model, developed using the LS-SVM regression method. Thirdly, the mass quality is determined from the void fraction through void fraction-quality correlation. And finally, the mass flowrate of the two-phase flow is calculated from the mass quality and the differential pressure across the Venturi meter. Experimental results demonstrate that the proposed method is effective for the measurement of the mass flowrate of air–water flow. The proposed method introduces the flow pattern information in the measurement process, which minimizes the influence of flow pattern on the conventional differential pressure based methods. In addition, the mass quality is calculated from the void fraction, so the difficulty to obtain the mass quality in conventional methods is also overcome. Meanwhile, the new method is capable for providing concurrent measurements of multiple parameters of the two-phase flow including void fraction, mass quality and mass flowrate as well as an indication of the flow pattern.  相似文献   

11.
截面含气率作为气液两相流动过程中的基本参数之一,对石油管道的开采、输运,核反应堆冷却塔的设计等过程具有重要意义。本文提出了基于激光诱导成像技术和高速摄录系统的截面含气率直接检测方法,有效的避免管道曲率和介质折射率导致的光学畸变。在河北大学多相流循环装置进行实验,测量了18个流量点,液相流量测量范围10~35 L/min,气相流量测量范围2.0~3.0 L/min。运用计量比对的思想,对两种检测技术获得的截面含气率值求取偏差并进行修正,最大偏差仅为0.014 59。结果表明两种方法得到的截面含气率值具有较好的一致性,证明本文提出的荧光成像技术对气液两相分层流截面含气率的检测是有效的。  相似文献   

12.
Gas/liquid two-phase flow regime identification by ultrasonic tomography   总被引:1,自引:0,他引:1  
A gas/liquid two-phase flow is considered as a strongly inhomogeneous medium with respect to high contrast in acoustic impedance distribution. Based upon a binary logic operation and a method of “time-of-propagation along straight path”, an ultrasonic facility for tomographic imaging of gas/liquid two-phase flow was developed. In this paper the principle and construction of this facility are briefly introduced. Emphasis is placed on the evaluation of its performance in flow regime identification and cross-sectional void fraction measurement. Several flow pattern models were used and the corresponding monitoring results given. Finally, limitations and possible future improvements of the system are discussed.  相似文献   

13.
The progress of process tomography provides a new method for two-phase flow measurement. The dual-plane electrical resistance tomography (ERT) is combined with the correlation measurement technique to carry out the two-phase flow measurement in which the continuous phase is conductive liquid. The method of the estimation of void fraction and the disperse phase velocity by extracting the eigenvalue of the dual-plane ERT boundary measured data is presented. This method is applied to the transient flow-rate measurement of the air–water two-phase flow in vertical pipe. The information of disperse phase void fraction and distribution variation with time change can be considered adequately, and the estimated value of disperse phase void fraction and velocity can be gained fairly accurately in this method, which provides the data for the calculation of the transient flow-rate. The experiment results indicate that this kind of measurement method is valid when the distance between the upstream and downstream measured cross section is short enough.  相似文献   

14.
The performance of a turbine meter in two-phase (water/air) flow in a vertical pipe is assessed. If the single phase (water) meter factor is used in two-phase flow, the total (water and air) flowrate is found to be underpredicted. The error can be as much as 12.5% at a void fraction of 25%. A technique for using measurements of the fluctuations in the turbine meter rotor velocity to determine void fraction (= air flowrate/total flowrate) is described. A single meter is then used to measure, using this technique, both the water flowrate to an accuracy of ± 2% and void fraction to an accuracy of ±0.02.  相似文献   

15.
Void fraction (i.e., the volume fraction occupied by gas) is a key parameter for determining the coolability and neutron-moderating performance of a water-cooled nuclear reactor. To develop computational multi-fluid dynamics models for determining the void-fraction distribution, experimental data of comparable quality are required. We have developed a high-energy X-ray computed tomography (CT) system to acquire three-dimensional void-fraction distributions. The CT system comprises a linear-accelerator-driven high-energy X-ray source and a linear detector array. We quantified a boiling two-phase flow in a 5 × 5 heated rod bundle at high pressure, simulating a fuel-rod bundle in a boiling water reactor (BWR). Because the axial travel of the CT system is 4 m and includes the entire BWR fuel-rod bundle, we optimized the CT imaging conditions and reconstruction method for rod-bundle visualization to reduce uncertainties due to density fluctuations in the boiling flow and imaging artifacts. We conducted a boiling experiment at a low flow rate and low thermal power and acquired three-dimensional distributions of the void fraction over a wide pressure range of 0.1–7.2 MPa. The experiment provided three-dimensional void-fraction distributions with high spatial resolution, especially in subchannel regions surrounded by rods, and the results are suitable for validating three-dimensional thermal-hydraulic analysis codes.  相似文献   

16.
In order to investigate the characteristics of an electromagnetic flowmeter in two-phase flow, an alternating-current electromagnetic flowmeter was designed and manufactured. The signals and noise from the flowmeter under various flow conditions were obtained, and analyzed in comparison with the flow patterns observed with a high-speed charge-coupled device camera.

An experiment with void simulators, in which a rod-shaped non-conducting material was used, was carried out to investigate the effect of bubble position and void fraction on the flowmeter. Two-phase flow experiments, encompassing bubbly to slug flow regimes, were conducted with a water–air mixture.

The simple relation ΔUTPUSP/(1−), relating the flowmeter signal between single-phase flow and two-phase flow, was verified with measurements of the potential difference and the void fraction for a bubbly flow regime. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement increased slightly with increasing void fraction and superficial liquid velocity jf.

Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of the slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.  相似文献   


17.
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated.  相似文献   

18.
Based on Biot–Savart law and single-phase flow Kármán vortex characteristics, flow field has been analyzed when gas–liquid flow past a fixed bluff body with high void fraction. Vortex signal characteristics have been studied for stratified two-phase flow on atmospheric conditions in a horizontal pipe. To discuss the relation between void fraction and vortex signal amplitude spectrum, this paper sets up the vortex-induced pressure field model for gas–liquid two-phase flow and gives the relationship between void fraction and relative amplitude spectrum of two-phase flow to single-phase flow. An algorithm is proposed for predicting the two-phase flow parameters. Experiments were performed using air–water as working fluid along with a test tube diameter of 50 mm, at gas volume flow rate of 20–68 m3/h, and void fraction of 0.9–1. The results indicate that calculations by the vortex-induced pressure field model on the amplitude spectrum of vortex signal are in good agreement with the experimental data, and relative errors of the algorithm predictions on gas volume flow rate and liquid volume flow rate are 0.08 and 0.56, respectively.  相似文献   

19.
A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.  相似文献   

20.
A water-driven annular type ejector loop is designed and constructed for air absorption. Fabricated ejector unit is horizontally installed in the loop, and annular water jet at the throat entrained atmospheric air through the circular pipe placed at the center of the ejector. The tested range of water flow rate is 160 L/min to 320 L/min and volumetric flow rate of water and air and local pressure are quantitatively measured using LabVIEW signal express program. For the quantitative measurement of bubble velocity, cinematic PIV technique using a high speed camera is adapted. In post processing, each bubble is used as seeding particles and ensemble averaged bubble velocity field at vertical plane of the ejector system is finally acquired. In the range of experiment, the bubble size distribution at downstream of the ejector seems to be quite uniform so that the flow can be classified as a homogeneous bubbly flow. In case of low range of water flow rate, the transition from bubbly flow to stratified flow occurs at the atmospheric outlet condition. As a comparative study, a numerical simulation on the same ejector shape is performed to understand the more detail hydrodynamic characteristics in the annular type ejector system. Homogeneous bubbly flow regime is used as default two-phase flow regime, and void fraction at the vertical plane of the ejector system is qualitatively compared with that of experiment. In volume flow rate comparison, numerical prediction agrees well with that of experiment where the homogeneous bubbly flow is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号