共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Type titanium alloys are promising materials for orthopaedic implants due to their relatively low Young’s modulus and excellent biocompatibility. However, their strength is lower than those of α- or α + β-type titanium alloys. Grain refinement by severe plastic deformation (SPD) techniques provides a unique opportunity to enhance mechanical properties to prolong the lifetime of orthopaedic implants without changing their chemical composition. In this study, β-type Ti–45Nb (wt%) biomedical alloy in the form of 30 mm rod was subjected to hydrostatic extrusion (HE) to refine the microstructure and improve its mechanical properties. HE processing was carried out at room temperature without intermediate annealing in a multi-step process, up to an accumulative true strain of 3.5. Significant microstructure refinement from a coarse-grained region to an ultrafine-grained one was observed by optical and transmission electron microscopy. Vickers hardness measurements (HV 0.2) demonstrated that the strength of the alloy increased from about 150 to 210 HV 0.2. Nevertheless, the measurements of Young’s modulus by nanoindentation showed no significant changes. This finding is substantiated by X-ray diffraction analyses which did not exhibit any phase transformation out of the bcc phase being present still before processing by HE. These results thus indicate that HE is a promising SPD method to obtain significant grain refinement and enhance strength of β-type Ti–45Nb alloy without changing its low Young’s modulus, being one prerequisite for biomedical application. 相似文献
2.
The equilibrated grain boundary groove shapes of solid Sn solution (Sn-40.14 at.% In-16.11 at.% Bi) in equilibrium with the In–Bi–Sn liquid (In-21.23 at.% Bi-19.04 at.% Sn) were observed from the quenched sample at 59 °C. Gibbs–Thomson coefficient, solid–liquid interfacial energy and grain boundary energy of the solid Sn solution have been determined from the observed grain boundary groove shapes. The thermal conductivity of solid phase for In-21.23 at.% Bi-19.04 at.% Sn alloy and the thermal conductivity ratio of liquid phase to solid phase at the melting temperature have also been measured with radial heat flow apparatus and Bridgman type growth apparatus, respectively. 相似文献
3.
This study investigates the effect of the composite addition of Al and Cu on the microstructure, physical properties, wettability, and corrosion properties of Sn–20Bi solder alloy. Scanning electron microscopy and X-ray diffraction were used to identify the microstructure morphology and composition. The spreading area and contact angle of the Sn–20Bi–x (x?=?0, 0.1 wt% Al, 0.5 wt% Cu, and 0.1 wt% Al–0.5 wt% Cu) alloys on Cu substrates were used to measure the wettability of solder alloys. The results indicate that the alloy with 0.1 wt% Al produces the largest dendrite and the composite addition of 0.1 wt% Al and 0.5 wt% Cu formed Cu6Sn5 and CuAl2 intermetallic compounds in the alloy structure. And the electrical conductivity of Sn–20Bi–0.1Al is the best, which reaches 5.32 MS/m. The spread area of the solder alloy is reduced by the addition of 0.1 wt% Al and 0.5 wt% Cu, which is 80.7 mm2. The corrosion products of Sn–20Bi–x solder alloys are mainly lamellar Sn3O(OH)2Cl2 and the corrosion resistance of 0.1 wt% Al solder alloy alone is the best. The overall corrosion resistance of Sn–20Bi–0.1Al–0.5Cu is weakened and the corrosion of solder alloy is not uniform. 相似文献
4.
The magnetic properties of an Fe–6.5 wt.% Si alloy can be improved through texture and microstructure control during directional solidification process. With the increasing of directional solidification rate, the main texture of the Fe–6.5 wt.% Si alloy along specimen withdrawing direction evolved in the way of < 130> → < 100> → < 142>, and the coercivity initially decreased and then increased. For the directional solidification rate of 1 mm/min, a homogeneous microstructure of the Fe–6.5 wt.% Si alloy specimen with low energy boundaries between columnar grains was obtained. The main texture of the specimen was < 100>, and the coercivity of the alloy was reduced by 44% compared with that of the alloy consisting of equiaxed grains. 相似文献
5.
Al–Bi immiscible alloy is of particular interest as potential self-lubricating wear materials with a homogeneous distribution of minority phase. However, it is difficult to obtain a homogeneous microstructure by conventional casting methods due to liquid phase separation of Al–Bi immiscible alloy. We have developed a new strategy to restrain liquid phase separation and improve the properties of Al–Bi immiscible alloy by in situ phases. The in situ AlB 2 phase acts as heterogeneous nucleation site to accelerate the nucleation and slow down the velocity of the Bi-rich droplet, resulting in a significant size reduction and a homogeneous microstructure of Al–Bi immiscible alloy. The self-lubricating wear resistance of Al–Bi immiscible alloy can be further enhanced by in situ Al 2Cuphase. 相似文献
6.
AbstractAs the number of layers on multilayer printed-circuit boards increases, the interlayer bonding requirements become progressively more stringent. One way of easing interlayer stresses is to reduce the preheat-soldering temperature interval. To do this by raising the preheat temperature is damaging to both board and components, and one alternative is to choose a solder alloy with a lower melting point than conventional Sn-Pb solders. In this paper, a study is described of the wetting characteristics of a range of near-eutectic Sn-Bi alloys, whose melting points fall near 139°C, ~46 K lower than Sn-Pb solders, making possible a reduction of 55 K in soldering temperature. The effect of divergence of composition from the 42Sn-58Bi eutectic composition on wetting, wetting speed, and spread area is described for two flux systems on plain copper, immersiontinned copper, and palladium-coated substrates. Additionally, the effects of various impurity levels of Sb, As, Cu, Fe, Pb, Ni, and Pd on solderability are investigated, the type of defects which each produces being listed. Some difficulties involved in contamination investigations on Al and S are also discussed. Finally, the effects of these impurities on Sn-Pb and Sn-Bi eutectic solder alloys are compared.MST/88 相似文献
7.
The alloy of 75% Cu–25% Sn was utilised and hot-pressed for 4 min at 421, 520 and 600 °C to obtain a self-sharpening bond for diamond honing stones at low sintering temperature. Densification and mechanical tests were performed, and structures were investigated by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. Results showed that the porous structures changed into microporous structures when the hot pressing temperature was increased from 421 °C to 600 °C. The mechanical properties improved from HRB 79.1 to HRB 105.1 in hardness and from 104.2 MPa to 201.4 MPa in transverse rupture strength. After hot pressing at 600 °C, the microstructure consisted of α(Cu) + δ eutectoid and micropores, which meets the requirements of bonds for honing stones. 相似文献
9.
Thermodynamic studies of the non-stoichiometric iron doped beta-alumina (ID ) phase were carried out by electrochemical measurements coupled with coulometric titration using the cell Na liq/Li -alumina/ID . Hot pressing and glass sealing techniques were developed and employed to obtain a suitable and stable Li -alumina/ID interface. The equilibrium e.m.f. of the cell was determined as a function of sodium concentration over the temperature range 444 to 523 K. The range of sodium concentrations over which the ID phase is stable was also determined. The relative partial molar thermodynamic quantities of sodium,
,
, and
in ID alumina as a function of sodium concentration were obtained from cell e.m.f. data. 相似文献
10.
The microstructure and crystallographic texture have been investigated in a Cu–45 at.%Ni alloy after heavy rolling and subsequent annealing at different temperatures. Cold-rolling to a von Mises strain of 5.7 produced a sample with an average boundary spacing along the normal direction of ~70 nm and a large fraction of high-angle boundaries (HABs), ~70 %. Annealing of this sample for 1 h at temperatures ≤450 °C causes structural coarsening, during which the fraction of HABs decreases. Annealing at higher temperatures results in pronounced discontinuous recrystallization accompanied by twinning. Large frequencies of twin boundaries contribute to high HAB fractions measured in the as-recrystallized condition. Cube-oriented grains demonstrate a size advantage compared to grains of other orientations, thus creating a strong cube texture in the recrystallized material. Further annealing of the recrystallized microstructure promotes grain growth, which leads to a significant strengthening of the cube texture and to a dramatic loss of HABs. After 1 h of annealing at 1000 °C the fraction of the cube texture reaches 99 % and the HAB fraction is 12 %. 相似文献
11.
We describe barothermal processing (hot isostatic pressing) of an Al–10 at % Si binary alloy for 3 h at a temperature of 560°C and pressure of 100 MPa. The results demonstrate that this processing ensures a high degree of homogenization of the as-prepared alloy, which is chemically and structurally inhomogeneous. The morphology of the silicon microparticles in the material suggests that heat treatment of the Al–10 at % Si alloy at 560°C and a pressure of 100 MPa leads to a thermodynamically driven, essentially complete silicon dissolution in the aluminum matrix and the formation of a metastable, supersaturated solid solution, which subsequently decomposes during cooling. We analyze the associated porosity elimination process, which makes it possible to obtain a material with 100% relative density. Barothermal processing of the Al–10 at % Si alloy is shown to produce a bimodal size distribution of the silicon phase constituent: microparticles 1.6 µm in average size and nanoparticles 43 nm in average size. Barothermal processing is shown to reduce the thermal expansion coefficient of the alloy, and the microhardness of the two-phase alloy is determined. Based on the present results, we conclude that barothermal processing is an effective tool for eliminating microporosity from the Al–10 at % Si alloy, reaching a high degree of homogenization, and producing a near-optimal microstructure, which surpasses results of conventional heat treatment of the material at atmospheric and reduced pressures. 相似文献
13.
The present study was performed on an A356.2 alloy. Two types of initial materials were used, i.e. fresh and recycled. A total of 13 operations representing those normally applied in aluminium foundries were simulated under dry atmospheric conditions (humidity 15%–20%). The molten metal was cast into test bars which were T6 tempered prior to tensile testing. The results show that holding the liquid metal for a long time, i.e. 72 h at 735°C leads to sedimentation of most inclusions towards the bottom of the melting crucible. However, a change in the surrounding humidity may cause absorption of hydrogen and, hence, a large amount of porosity. Degassing using dry argon injected into the liquid metal through a rotary impeller (speed 160 r.p.m) appears to be the best technique for inclusion removal. The efficiency of this process is significantly improved when it is coupled with filtration using ceramic foam filters (10 and 20 p.p.i). A linear relationship between alloy ductility and logarithm of percentage inclusions has been established. Owing to decohesion between the inclusions/oxide films and the surrounding matrix, cracks are easily initiated at their interfaces, leading to unpredicted failure. © 1998 Chapman & Hall 相似文献
14.
The tribological properties of Ni–20 wt.% Pb alloys were measured by using a ball-on-disc reciprocating tribo-tester. The effects of load, sliding speed and melt undercooling on wear rate of the sample were investigated. The worn surface of Ni–20 wt.% Pb was examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that the wear properties of the samples undercooled by 85 and 390 K are obviously superior, which is attributed to more efficient transfer of Pb from the bulk material to the worn surface. The lubricating film is identified as a mixture of Ni 2O 3 and lead oxide by XPS analysis. At the same load or sliding speed, the predominant wear mechanisms can be identified as oxidative wear for the lower and larger undercooling and plastic deformation for the medium undercooling. 相似文献
15.
In the present work, microstructure and mechanical properties of 3 wt.% Li addition in a Al–Mg–Si alloy of target composition 0.5 wt.% Mg and 0.2 wt.% Si in W (solution heat treated), T6 (solution heat treated and artificially aged) and T8 (solution heat treated, cold worked and artificially aged) conditions was studied. The age-hardening response of the alloy was determined after systematic cold reductions from 10%, 20%, 30%, 40%, 50% and 60% in quenched condition followed by aging at 175 °C (448 K) for 2, 4, 6, 8, 10 and 12 h (T8 condition). The results were compared with samples aged in the same conditions with 0% cold reduction (T6 condition). The alloy displayed a strong artificial aging response and maximum hardness value achieved was after 60% cold work and 10 h of aging time. Furthermore, the yield strength and the ultimate tensile strength were increased from 123 MPa to 224 MPa and 356 MPa to 540 MPa respectively with a slight decrease in ductility. Scanning electron microscopy (SEM) based fractography showed a uniform network of bigger and deeper dimples with round morphology in T6 condition while a ductile tearing with few discernable cleavage planes was observed in T8 condition. The interplay of various precipitation hardening mechanisms and relevant phases was established by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was concluded that the enhancement in mechanical properties, with the degree of cold work, was attributed due to a possible refinement of δ′ (Al 3Li) precipitates resulted after aging. 相似文献
17.
In order to understand the effect of Mo alloying on the microstructural evolution of TiAl alloy, the as-cast microstructure, heat treated microstructure characteristic, and hot compression microstructure evolution of Ti-44 A1 alloy have been studied in this work. The as-cast microstructure morphology changes from(γ+α_2)lamellar colony and β/β_0+γ mixture structure to β/β_0 phase matrix widmannstatten structure,when Mo content increases from 2 at.% to 6 at.%. Affected by the relationship between β phase and αphase, the angles between the lamellar orientation and the block β/β_0 phase are roughly at 0°, 45° and90°. Comparing with heat treatment microstructure, the hot compression microstructure contains lessβ/β_0 phase, however, the β/β_0 phase containing 2 Mo alloy and 3 Mo alloy hot compressed at 1275 ℃ has the inverse tendency. In addition,(α_2 +γ) colony is decomposed by the discontinuous transformation. 相似文献
18.
In a sample quenched during equiaxed solidification of an Al-5 wt.% Cu alloy, the multi-scales 3-dimensional morphology of equiaxed dendrite was observed. The slim primary stem and secondary branches constitute the frame of dendrite, and rows of dense tertiary branches further divide the 3-dimensional space. In the divided space, the quartic branches grow further. The dendritic branches,which are perpendicular to each other, can change their growth directions and coalesce into a whole. In the tertiary branches and quartic branches, the formation of double branch structures is induced by competitive growth. The branch that wins in the competitive growth will produce a cabbage-like structure by wrapping the failed branches. In addition, the side branch can also wrap the original parent branch to produce cabbage-like structures. Depending on the historical growth direction, the dendritic arms can form vein-like and spicate structures, and the shapes of single dendritic arm may be the cylinder, plate and trapezoid platform. According to the compositions and etching morphology, the single dendritic arm in the final solidification structures should coalesce from a fine porous structure. The porous structures at different length-scales are principally induced by the preferential growth. Based on 3-dimensional morphology of equiaxed dendrite, a new research object for the investigation of microsegregation was suggested. 相似文献
19.
The Mg–Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application
in nickel–metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and
relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to
allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg–50 at.% Ni alloy
with Ni and Ni–5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating
additives, Mg–Ni alloy and resulting nanocomposites (i.e., Mg–Ni alloy + additive) were investigated by means of X-ray diffraction
and scanning electron microscopy. The Mg–Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and
discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni–5% Al increased the maximum discharge
capacity of the Mg–Ni alloy from of 221 to 257 and 273 mA h g −1, respectively. Improvement on the cycle life performance was also achieved by mechanical coating. 相似文献
20.
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg–3Ce–1.2Mn–1Zn (wt.%) alloy were investigated by using optical and electron microscopes, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that the additions of 0.3–0.9 wt.%Ca to the Mg–3Ce–1.2Mn–1Zn alloy do not cause an obvious change in the morphology and distribution for the Mg 12Ce phase in the alloy. However, the grains and secondary dendrite arm spacings of the Ca-containing alloys are refined, and an increase in Ca amount from 0.3 wt.% to 0.9 wt.% causes the grain size and secondary dendrite arm spacings to gradually decrease, respectively. In addition, the additions of 0.3–0.9 wt.%Ca to the Mg–3Ce–1.2Mn–1Zn alloy can effectively improve the as-cast tensile and creep properties of the alloy, and an increase in Ca amount from 0.3 wt.% to 0.9 wt.% causes the as-cast tensile and creep properties to gradually increase, respectively. 相似文献
|