首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding motif present in E2F1. Examination of the pRB C terminus revealed that it contained sequence elements related to ZRXL. Site-directed mutagenesis of one of these sequences, beginning at residue 870, impaired the phosphorylation of pRB in vitro. A synthetic peptide spanning this sequence also inhibited the phosphorylation of pRB in vitro. pRB C-terminal truncation mutants lacking this sequence were hypophosphorylated in vitro and in vivo despite the presence of intact cyclin-cdk phosphoacceptor sites. Phosphorylation of such mutants was restored by fusion to the ZRXL-like motif derived from pRB or to the ZRXL motifs from E2F1 or p21. Phospho-site-specific antibodies revealed that certain phosphoacceptor sites strictly required a C-terminal ZRXL motif whereas at least one site did not. Furthermore, this residual phosphorylation was sufficient to inactivate pRB in vivo, implying that there are additional mechanisms for directing cyclin-cdk complexes to pRB. Thus, the C terminus of pRB contains a cyclin-cdk interaction motif of the type found in E2F1 and p21 that enables it to be recognized and phosphorylated by cyclin-cdk complexes.  相似文献   

2.
Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We have previously demonstrated that the N-terminal J domain of TAg affects the RB-related proteins by perturbing the phosphorylation status of p107 and p130 and promoting the degradation of p130 and that this domain is required for transformation of cells that express either p107 or p130. In this work, we demonstrate that the J domain of TAg is required to inactivate the ability of each member of the pRB family to induce a G1 arrest in Saos-2 cells. Furthermore, the J domain is required to override the repression of E2F activity mediated by p130 and pRB and to disrupt p130-E2F DNA binding complexes. These results imply that while the LXCXE domain serves as a binding site for the RB-related proteins, the J domain plays an important role in inactivating their function.  相似文献   

3.
We demonstrate that p107 and p130 immune complexes exhibit kinase activity. We have tested such immune complexes with four substrates commonly utilized to assay Cdk activity, including all three known members of the retinoblastoma family. Immunodepletion revealed this kinase activity could be abolished by removal of either cyclin A or Cdk2 but was unaffected by removal of Cdk4 or any D-type cyclin. The appearance of p107 associated activity followed the accumulation of p107 protein. In contrast, the kinase activity associated with p130 immune complexes became apparent after mid-G1, coincident with p130 hyperphosphorylation. GST-Rb, GST-p107, and GST-p130 (where GST indicates glutathione S-transferase) were equally suitable substrates in p107 and p130 immune complex kinase assays, yielding activity equal to 25% of the cyclin A activity present. The p107 and p130 associated activity was unable to phosphorylate histone H1, suggesting the p107 and p130 associated cyclin A/Cdk2 may represent a distinct pool with a distinct substrate specificity. The p107 and p130 associated activity was released from the immune complexes upon incubation with ATP and Mg2+ and exhibited the same substrate preference observed with the untreated immune complex. Our data suggest that p107 and p130 recognize, or form by association, a distinct pool of cyclin A/Cdk2 that preferentially phosphorylates retinoblastoma family members.  相似文献   

4.
Loss-of-function mutations of p16(INK4a) have been identified in a large number of human tumors. An established biochemical function of p16 is its ability to specifically inhibit cyclin D-dependent kinases in vitro, and this inhibition is believed to be the cause of the p16-mediated G1 cell cycle arrest after reintroduction of p16 into p16-deficient tumor cells. However, a mutant of Cdk4, Cdk4(N158), designed to specifically inhibit cyclin D-dependent kinases through dominant negative interference, was unable to arrest the cell cycle of the same cells (S. van den Heuvel and E. Harlow, Science 262:2050-2054, 1993). In this study, we determined functional differences between p16 and Cdk4(N158). We show that p16 and Cdk4(N158) inhibit the kinase activity of cellular cyclin D1 complexes through different mechanisms. p16 dissociated cyclin D1-Cdk4 complexes with the release of bound p27(KIP1), while Cdk4(N158) formed complexes with cyclin D1 and p27. In cells induced to overexpress p16, a higher portion of cellular p27 formed complexes with cyclin E-Cdk2, and Cdk2-associated kinase activities were correspondingly inhibited. Cells engineered to express moderately elevated levels of cyclin E became resistant to p16-mediated growth suppression. These results demonstrate that inhibition of cyclin D-dependent kinase activity may not be sufficient to cause G1 arrest in actively proliferating tumor cells. Inhibition of cyclin E-dependent kinases is required in p16-mediated growth suppression.  相似文献   

5.
P130 shares structural and functional homology with pRb and p107. One property common to p107 and p130, but not to pRb, is the ability to stably interact with cyclin A/cdk2 and cyclin E/cdk2 complexes in vitro and in vivo. Using GST-p130 fusion proteins representing various regions of p130, baculovirus-produced cyclin A/cdk2 and cyclin E/cdk2 complexes were found to interact with residues within a part of p130 known as the spacer region. Cyclin E was able to bind the p130 spacer region in the presence or absence of cdk2 whereas cyclin A binding was dependent upon the presence of cdk2. The smallest p130 fusion protein sufficient to interact with cyclin A/cdk2 or cyclin E/cdk2 complexes contained p130 amino acids 652-698 and deletion of p130 amino acids 680-682 abolished binding to both of the cyclin/cdk2 complexes. When overexpressed in C33A cells, a p130 mutant containing a deletion of amino acids 620-697 was unable to form complexes with either cyclin A or cyclin E. This p130 mutant was at least as active as wild type p130 in suppressing the growth of G418 resistant colonies when overexpressed in C33A or SAOS-2 cells.  相似文献   

6.
7.
8.
UCN-01 (7-hydroxyl-staurosporine), which was initially developed as a selective protein kinase C inhibitor, has an anti-tumor effect on several human cancer cell lines in vivo. In this study, we examined whether this compound has an inhibitory effect on cell cyclin-dependent kinases (cdks) in vitro and in vivo using A549 human lung adenocarcinoma cell line. UCN-01 inhibited the retinoblastoma susceptibility gene product (pRB) kinase activity of three types of cdks (cdk 2, 4 and 6) with 50% inhibitory concentration values of 42, 32, and 58 nM, respectively, in vitro. Moreover, the amount of phosphorylated pRB was reduced by UCN-01 at a concentration of 100 nM in the living cells. Flow cytometric analysis showed that UCN-01 inhibited cell cycle progression at G1 to S transition in A549 cells at the concentration of 100 nM. These results suggest that inhibition of pRB phosphorylation by UCN-01 might lead to inhibition of the cell cycle and thereby contribute to antitumor activity of this compound.  相似文献   

9.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

10.
11.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of approximately 120 and approximately 200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

12.
The cell cycle regulatory proteins, which include cyclin-dependent kinases (cdks), cdk inhibitors (CKIs), cyclins, and the pRB, and E2F families of proteins, constitute a network of interacting factors which govern exit from or passage through the mammalian cell cycle. While the proteins within these families have similar structural characteristics, each family member exhibits distinct expression patterns during embryogenesis and distinct biological activities. In order to begin to understand the tissue-specific roles of these interacting factors, we determined the expression pattern and activity of the pRB, E2F, cyclin, cdk, and CKI families of cell cycle regulatory proteins during retinoic acid-induced (neuronal pathway) and DMSO-induced (cardiac muscle pathway) differentiation of the pluripotent murine embryonal carcinoma cell line, P19. We demonstrate here that P19 terminal differentiation causes lineage-specific changes in the expression and activity of distinct members of the E2F, pRB, cyclin, and CKI families. Furthermore, dynamic changes in the activities of these cell cycle regulatory proteins occur through several overlapping mechanisms, culminating in repression of DNA-binding activity by all of the E2F family members as cells terminally differentiate.  相似文献   

13.
14.
15.
The cell cycle is a complex process that involves numerous regulatory proteins that direct the cell through a specific sequence of events culminating in mitosis and the production of two daughter cells. Central to this process are the cyclin-dependent kinases (cdks), which complex with the cyclin proteins. These proteins regulate the cell's progression through the stages of the cell cycle and are in turn regulated by numerous proteins, including p53, p21, p16, and cdc25. Downstream targets of cyclin-cdk complexes include pRb and E2F. The cell cycle can be altered to the advantage of many viral agents, most notably polyomaviruses, papillomaviruses, and adenoviruses. The cell cycle often is dysregulated in neoplasia due to alterations either in oncogenes that indirectly affect the cell cycle or in tumor suppressor genes or oncogenes that directly impact cell cycle regulation, such as pRb, p53, p16, cyclin D1, or mdm-2. The cell cycle has become an intense subject of research in recent years. This research has led to the development of techniques useful for the determination of the effects of drugs and toxins on the cell cycle. Any drug or toxin with DNA damaging ability would be expected to alter cell cycle progression, and therefore, the cell cycle should be considered in the design of studies using such chemicals. With the appropriate techniques, cell cycle alterations may also be detected in tissue sections. Because of the ubiquitous nature of the cell cycle, it deserves consideration in the design and interpretation of studies in a wide variety of disciplines.  相似文献   

16.
Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 --> S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.  相似文献   

17.
An immunosuppressant Rapamycin (Rap) has been reported to cause G1 arrest by inhibiting p70 S6 kinase and G1 cyclin/cdks kinase activities when added to quiescent cells with mitogens. However, antiproliferative effects of Rap on exponentially growing cells have been poorly investigated. We examined the intracellular events after the treatment of Rap in exponentially growing T cells and found that Rap upregulated a cdks inhibitor, p27Kip1 at both mRNA and protein levels in Rap-sensitive cells. Antiproliferative effect of Rap was mainly ascribed to the inhibition of cyclin E/cdk2 kinase activity through the formation of cyclin E/cdk2-p27Kip1 complex rather than inhibition of p70 S6 kinase activity. Furthermore, we showed that Rap-sensitive cells with elevated p27Kip1 expression lost sensitivity to Rap when antisense p27Kip1 was introduced, which indicates that the basal level of p27Kip1 is one of the limiting factors that determine the sensitivity to Rap in already cycling cells. These data suggest the presence of a putative threshold level of p27Kip1 at late G1 phase in already cycling cells. Rap may cause G1 arrest by upregulating the amount of p27Kip1 beyond the threshold in some Rap-sensitive cells that are exponentially growing.  相似文献   

18.
19.
Simian virus 40 large T antigen interacts with three cellular proteins, pRb, p107, and p130, through a common binding site on the T antigen protein called the E1A conserved region 2-like (CR2-like) domain. Mutations in this domain inactivate the transforming activity of large T antigen. Since these mutations have been demonstrated to abolish binding to pRb and p107, and presumably therefore affect binding to p130, assessment of the relative roles of these three proteins in transformation of rodent fibroblasts by T antigen has been difficult. We have examined the role of T antigen-pRb interactions in transformation. We have introduced a mutant T antigen, which is unable to bind any of these three proteins, into primary mouse fibroblasts derived from the embryos of mice in which the Rb gene encoding the retinoblastoma protein had been disrupted. This mutant is unable to transform the Rb-negative fibroblasts, indicating that inactivation of pRb is not the sole function of the CR2-like domain in the induction of transformation of mouse fibroblasts by simian virus 40.  相似文献   

20.
An important question in the cell cycle field is how cyclin-dependent kinases (cdks) target their substrates. We have studied the role of a conserved hydrophobic patch on the surface of cyclin A in substrate recognition by cyclin A-cdk2. This hydrophobic patch is approximately 35A away from the active site of cdk2 and contains the MRAIL sequence conserved among a number of mammalian cyclins. In the x-ray structure of cyclin A-cdk2-p27, this hydrophobic patch contacts the RNLFG sequence in p27 that is common to a number of substrates and inhibitors of mammalian cdks. We find that mutation of this hydrophobic patch on cyclin A eliminates binding to proteins containing RXL motifs without affecting binding to cdk2. This docking site is critical for cyclin A-cdk2 phosphorylation of substrates containing RXL motifs, but not for phosphorylation of histone H1. Impaired substrate binding by the cyclin is the cause of the defect in RXL substrate phosphorylation, because phosphorylation can be rescued by restoring a cyclin A-substrate interaction in a heterologous manner. In addition, the conserved hydrophobic patch is important for cyclin A function in cells, contributing to cyclin A's ability to drive cells out of the G1 phase of the cell cycle. Thus, we define a mechanism by which cyclins can recruit substrates to cdks, and our results support the notion that a high local concentration of substrate provided by a protein-protein interaction distant from the active site is critical for phosphorylation by cdks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号