首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
研究了000Cr25Ni20奥氏体不锈钢在不同温度和不同浓度硝酸中的腐蚀电化学行为,发现随着硝酸浓度和温度的升高,000Cr25Ni20不锈钢在溶液中的自腐蚀电位向过钝化区移动,钝化区范围变小。钝化电位下,000Cr25Ni20不锈钢的电化学阻抗谱呈容抗特征,容抗弧半径较大;同一外加钝化电位下硝酸浓度对阻抗谱的影响不明显;在钝化/过钝化过渡区,伴随晶间腐蚀的出现,阻抗谱在低频段出现感抗特征,随着钝化膜极化阻值的急剧减小,高频段的容抗半径大幅度减小。  相似文献   

2.
采用浸泡试验结合极化曲线以及电化学阻抗测试研究了304不锈钢在含不同浓度Cl-的水溶液中的腐蚀行为。结果表明引起304不锈钢产生明显点蚀的NaCl浓度为0.4%;随Cl-浓度和温度的升高,点蚀现象加重;点蚀电位与温度之间存在一线性关系;阻抗谱测试也显示出NaCl浓度大于0.4%后对钝化膜的破坏性显著增强。  相似文献   

3.
304不锈钢在稀盐酸中的电化学腐蚀行为   总被引:1,自引:0,他引:1  
采用电化学阻抗谱、极化曲线等测量方法研究了304不锈钢在不同浓度、浸泡时间下的腐蚀电化学行为。测定结果表明:304不锈钢在浓度0.3 mol/L的盐酸溶液中阻抗谱出现两个时间常数,极化曲线中钝化区变窄,钝化膜破裂,其金属表面发生点蚀。随浸泡时间延长,不锈钢耐腐蚀性降低。  相似文献   

4.
采用动电位极化曲线、电化学阻抗谱、扫描电镜和能谱分析方法研究了304L不锈钢在硼酸水溶液中的腐蚀行为。结果表明,304L不锈钢的自腐蚀电位和腐蚀电流密度随着硼酸水溶液温度的升高而增大;不同温度下的电化学阻抗谱呈单容抗弧,表现为一个时间常数,80℃硼酸水溶液中的阻抗模值较小;随时间的延长,304L不锈钢的均匀腐蚀速率逐渐降低,并且维持在较低的腐蚀速率。  相似文献   

5.
采用缝隙腐蚀试样,通过浸泡实验以及循环极化、电化学阻抗、电化学噪声、恒电位测试等电化学方法,研究了2205双相不锈钢(2205DSS)和304不锈钢(304SS)在5%(质量分数)氢氟酸溶液中的缝隙腐蚀行为。结果表明,两种不锈钢在氢氟酸溶液中都发生了缝隙腐蚀,但2205双相不锈钢腐蚀形成的蚀坑较浅,而304不锈钢腐蚀形成的蚀坑较深,且腐蚀面积更大。电化学测试结果表明,2205DSS的临界缝隙腐蚀电位E_(crev)和再钝化电位E_(rp)都高于304SS的,滞后环的面积也更小,钝化膜电阻和缝隙腐蚀发生时的电荷转移电阻也更大。2205DSS的白噪声水平更小,缝隙腐蚀反应更慢。同时,在相同外加电位下,2205DSS的缝隙腐蚀诱导期更长,缝隙腐蚀发生时电流更小,2205DSS的抗缝隙腐蚀能力优于304SS,这主要与两种材料表面所成钝化膜的组成和性能不同有关。  相似文献   

6.
304不锈钢在NaCl-(NH4)2SO4-NH4Cl溶液中的腐蚀行为   总被引:1,自引:0,他引:1  
用电化学极化曲线和交流阻抗方法,研究了对304不锈钢(304SS)在3%NaCl和NaCl-(NH4)2SO4-NH4Cl混合溶液中的腐蚀行为.结果表明,在混合溶液中浸泡750h后,304SS仍然保持良好的钝化状态,其平均腐蚀电流密度为0.056mA/cm^2.根据交流阻抗研究结果,不锈钢在3%NaCl溶液中,主要表现出裸金属表面的点蚀和形成一定程度的钝化膜的特征,在2.0g/LNaCl、0.67g/L(NH4)2sSO4、2.3g/LNH4Cl混合溶液中,不锈钢表面形成稳定致密的钝化膜的典型特征.此钝化膜的电阻远小于腐蚀反应极化电阻.即使在形成良好的钝化膜的情况下,不锈钢所表现出的优良的抗腐蚀性能主要是由于金属表面活性点的钝化,而非钝化膜对离子导电或者对反应物/产物的扩散过程的阻隔作用.  相似文献   

7.
304不锈钢在垃圾渗滤液中的腐蚀行为   总被引:1,自引:0,他引:1  
用电化学极化曲线和电化学阻抗法研究了304不锈钢在垃圾渗滤液中的腐蚀行为.结果表明,在垃圾渗滤液中,不锈钢的腐蚀电位在-0.30~-0.60 V范围内波动,浸泡888小时后,平均腐蚀电流密度为2.829μA/cm2;不锈钢在垃圾渗滤液中具有良好的抗腐蚀性能,主要是由其表面活性点钝化引起的,并非钝化膜的阻隔作用.  相似文献   

8.
采用腐蚀挂片实验对304L奥氏体不锈钢在80~135℃下2%~20%(质量分数)硝酸溶液环境中的腐蚀行为进行评价,并结合扫描电镜和金相显微镜分别对金属试样表面的微观腐蚀形貌和晶间腐蚀深度进行分析。结果表明,304L不锈钢的腐蚀速率随着温度的升高或硝酸浓度的增大先是缓慢增大而后急剧增大,腐蚀类型逐渐由均匀腐蚀转变为晶间腐蚀;304L不锈钢在硝酸蒸汽中的腐蚀受温度和硝酸浓度的影响程度高于其在硝酸水溶液中的腐蚀,在硝酸蒸汽中更易发生晶间腐蚀,且蒸汽中的晶间腐蚀程度明显较水溶液中的严重;随着腐蚀的加剧,304L不锈钢表面出现了晶粒破碎和脱落,导致材料发生不同程度的腐蚀减薄,这表明表面晶粒强度明显变差,且与内部相邻晶粒间的结合力显著减弱。  相似文献   

9.
电化学合成聚吡咯及其腐蚀防护性能研究   总被引:1,自引:0,他引:1  
    采用循环伏安法在304不锈钢(304SS)基体上电化学合成聚吡咯(PPy)膜层,并通过Tafel极化曲线、电化学交流阻抗谱法(EIS)研究聚吡咯膜层的腐蚀防护性能.结果表明,聚吡咯膜层使304不锈钢基体的自腐蚀电位正移60 mV,腐蚀电流密度由10-6 A/cm2 变化到 10-7 A/cm2;覆有聚吡咯膜层的304不锈钢在腐蚀液中浸泡的过程中,由于聚吡咯的氧化还原能力,在金属表面加速钝化层的形成及修复破坏的钝化层,进一步提高了金属的抗腐蚀性能;聚吡咯膜层的防腐机制归结为物理屏蔽作用和钝化机制.  相似文献   

10.
利用电化学方法、SEM和EDS研究了少量硝酸对316L和Hastelloy C合金在循环废酸中腐蚀机理的影响。结果表明,循环废酸中的少量硝酸能使温度为80℃的循环废酸具有强氧化性,使铁基奥氏体不锈钢316L在循环废酸中形成致密的钝化膜,使其腐蚀速率大幅度降低;使Hastelloy C合金在循环废酸中的钝化膜发生局部溶解,使其腐蚀速率增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号