首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This research article is based mainly on the investigation of the effect of cryogenic machining, while reaming Titanium grade 5 alloy (Ti-6Al-4V) material. Cutting speed (Vc) and feed rate (f) are two input parameters at three different levels for a constant depth of the hole. The output parameters considered by using a cryogenic LN2 cooling compared to a conventional flood cooling are torque (Mt), thrust force (Ft), cutting temperature (T), quality of the hole (circularity and cylindricity), surface roughness (Ra) and chip morphology. The results show cryogenic liquid nitrogen (LN2) cooling resulting in 15–31% reduction in the cutting temperature, 23–57% reduction in the thrust force and 14–65% reduction in torque. Higher surface roughness, circularity (Cir) and cylindricity (Cyl) were observed in the cryogenic LN2 cooling condition. Furthermore, better chip breakability was observed in the cryogenic LN2 cooling condition. No drastic change in the microstructure was observed in both flood and cryogenic LN2 cooling. Increase in microhardness by 10–16% and 8–19% in cryogenic LN2 cooling over flood cooling was observed.  相似文献   

2.
Microstructural changes in the surface layer of Ti-6Al-4V alloy after sliding wear in vacuum have been studied by means of scanning and transmission electron microscopy (SEM and TEM). The wear rates of Ti-6Al-4V alloy in vacuum were measured under different sliding velocities and loads. The experimental results showed that a severely deformed layer with a grain size of 50–100 nm and thickness about 70 μm was formed underneath the worn surface. Under the slower sliding velocities, the substructure of the layer had a high dislocation density, while under higher sliding velocities, twins were found to exist in the substructure. A process by which the deformed layer formed has been proposed and the deformation of materials at the contacting spots of the Ti-6Al-4V sample is discussed.  相似文献   

3.
为研究除氢处理对置氢钛合金组织与性能的影响,对Ti-6Al-4V合金在不同参数条件下进行了置氢与除氢处理,采用光学显微镜分析了置氢-除氢处理过程中Ti-6Al-4V合金微观组织的演化规律,通过室温拉伸试验研究了置氢-除氢处理后Ti-6Al-4V合金的力学性能,探讨了Ti-6Al-4V合金置氢-除氢组织与力学性能之间的相...  相似文献   

4.
T. Yuri  Y. Ono  T. Ogata 《低温学》2006,46(1):30-36
Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.  相似文献   

5.
为了研究氢对Ti-6Al-4V合金室温压缩性能的影响,采用Zwick/Z100型材料试验机对置氢Ti-6Al-4V合金进行了压缩试验,并利用OM、XRD和TEM等材料分析方法对合金的微观组织进行了观察.研究表明:置氢前,Ti-6Al-4V合金由等轴的α相和β相组成,置氢后,出现马氏体组织和氢化物;随氢含量增加,马氏体和剩余β相数量增多;氢提高了Ti-6Al-4V合金的抗压强度和塑性等室温压缩性能,最大增幅分别为33.9%和56.3%;置氢Ti-6Al-4V合金抗压强度的提高主要归因于氢的固溶强化、马氏体相变强化和氢化物强化;塑性指标的提高主要是置氢合金中塑性β相数量的增多所致.  相似文献   

6.
The paper analyses, at nanoscale levels, the chemical composition and mechanical properties of the anodic oxide films formed on Ti-6Al-4V alloy by galvanostatic polarization at maximum final voltages of 12-100 V. For the investigations Auger Electron Spectroscopy, Photoelectron Spectroscopy and nanoindentation measurements have been used. The results have shown that anodizing the Ti-6Al-4V alloy produces an oxide film whose thickness depends on the final voltage. The chemical composition is not significantly dependent on the thickness, the film consists of TiO2 and Al2O3. However, the best insulating properties of the films, determined from the growth parameter nm/V, are achieved with a final voltage between 30 and 65 V. Nanohardness and Young's modulus measurements have shown that the anodic films formed by different voltages exhibit similar mechanical properties which is consistent with the results of the surface analysis.  相似文献   

7.
采用TiZrNiCu合金作为中间层材料研究了Ti3Al基合金与Ti-6Al-4V合金的瞬间液相(TLP)扩散连接接头成分、组织转变及显微硬度.研究结果表明,连接温度和连接时间对接头成分和组织有较大的影响.随着连接温度的提高和连接时间的延长,接头中元素分布趋于均匀,连接区宽度增大.连接温度为850℃和900℃时,液相的残留使得接头中存在Ti-Cu金属间化合物.当连接温度为950℃,连接时间为30min时,等温凝固的完成使Ti-Cu金属间化合物从接头中消失.随着连接温度的提高和连接时间的延长,接头连接区硬度降低.当连接温度为950℃,连接时间为30min时,接头硬度分布较均匀.  相似文献   

8.
The behaviour of oxidation at elevated tem-peratures and fretting in the laser-alloyed layer ofTi-6Al-4V with the addition of Pr was studied.The results show that the addition of Pr changes thestructure of oxide scale of Ti-6Al-4V,controls theshort-range diffusion of oxygen to thescale/substrate interface and increases the adhe-sion and ductility of the scale,thus changing theoxidation kinetics and considerably reducingoxidation rate.The analysis of fretting test showsthat the existence of high hardness layer in the al-loyed zone,fine dendrites perpendicular to the sur-face of the high hardness layer and the oxide scaleproduced during fretting at elevated temperaturesare all beneficial to the improvement of wear resist-ance.  相似文献   

9.
The titanium alloys are potential materials for high temperature applications in turbine components due to their very high temperature strength and lightweight properties. However, hot corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperature. In the present paper, hot corrosion behavior of Ti-6Al-4V (Ti-31) alloy in different salt environments viz. air, Na2SO4-60% V2O5 and Na2SO4-50% NaCl at 750 °C was studied. The parabolic rate constants were calculated for different environments from the thermo-gravimetric data obtained for the samples and they show that corrosion rate is minimum in air when compared to chemical environment. The scale formed on the samples upon hot corrosion was characterized by using X-ray diffraction (XRD), SEM, and EDAX analysis to understand the degradation mechanisms.  相似文献   

10.
Surgical implant-associated bacterial infection is becoming a serious clinical problem.A series of copper-bearing titanium alloy,Ti—6AI—4V—xCu(x = 1,3,5 wt%),were fabricated in the present study in order to reduce the hazard of the bacterial infection problem by means of the strong antibacterial ability of Cu element.The metallography,X-ray diffraction,antibacterial ability,corrosion resistance and cytotoxicity of Ti—6AI—4V—xCu alloys were preliminarily studied with comparison to the commercial medical Ti—6AI—4V alloy.The Ti—6AI—4V—xCu alloys showed obvious antibacterial abilities with good corrosion resistance and cytocompatibility,and the antibacterial role was enhanced with increasing Cu content,which has significant potential for clinical applications as surgical implant materials.  相似文献   

11.
The oxygen concentration in commercial Ti-6Al-4?V alloys was reduced to less than 400?ppm in this study by the method of solid state re-deoxidation, using calcium as a reductant. The concentration of oxygen in the deoxidised Ti-6Al-4?V alloy was 630?ppm at the optimum deoxidation temperature of 1000°C. When the degree of vacuum was increased and re-deoxidation was carried out, the oxygen concentration decreased to 355?ppm. Therefore, it is possible to prepare a Ti-6Al-4?V alloy with an oxygen concentration of less than 400?ppm by using the solid state re-deoxidation method at a high degree of vacuum of 1.5?×?10-6 Torr.  相似文献   

12.
The effect of triple annealing on stress relaxation of Ti-6Al-4V alloy as well as the microstructure after stress relaxation werestudied. The results showed that triple annealing treatment enhanced the resistance of stress relaxation performance, andwhen the temperature was rising, this effect became notable. The stress relaxation deformation mechanism is of dislocationcreep at 400℃ and recovery creep at 600℃.  相似文献   

13.
In this work, the current understanding and development of friction-stir welding and processing of Ti-6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wear, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted.  相似文献   

14.
真空感应凝壳熔炼TC4合金的显微组织和力学性能   总被引:8,自引:2,他引:6  
针对在航空航天等领域有重要应用背景的TC4合金 ,运用水冷铜坩埚真空感应熔炼炉制备了合金铸锭 ,研究了合金在铸态、热处理和热等静压条件下的显微组织和力学性能 .结果表明 ,铸态TC4合金的晶粒粗大 ,基体为大片状α+ β相组织 ,合金的强度较高 ,塑性低 ;合金经热处理 ,尤其经热等静压处理后 ,组织明显细化 ,塑性提高 .  相似文献   

15.
Effect of mean stress on fretting fatigue of Ti-6Al-4V on Ti-6Al-4V   总被引:1,自引:0,他引:1  
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori.  相似文献   

16.
S Taktak  H Akbulut 《Vacuum》2004,75(3):247-259
Ti-6Al-4V alloys, which were exposed to an explosive shock process, were nitrided in nitrogen plasma in the temperature range of 700-900°C for 3-12 h. During the plasma nitriding, the surface layer consisted of TiN (δ), Ti2N (ε) and nitrogen solid solution layers (α-Ti). The growth rate of nitride and solid solution layers were found to be controlled by the diffusion of nitrogen. An effective nitriding was achieved due to high dislocation density and vacancy concentration. Based on the present layer growth data, an analytical model for multiphase diffusion was used to estimate the effective nitrogen atom diffusion coefficient in the nitride layers. The interface velocity equations were derived from Fick's law and a numerical method has been used to compute the diffusion coefficients of nitrogen in a binary multiphase Ti-TiN system. Depending on temperature and layer thickness, the activation energies of nitrogen in TiN and Ti2N phases were found to be 18,950 (±2116) and 27,925 (±1105) cal/mole, respectively.  相似文献   

17.
Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.  相似文献   

18.
The objective of this work was to compare the fretting fatigue performance of Ti‐6Al‐4V dovetail specimens on Ti‐6Al‐4V pads having various contact angles typical of engine hardware; 35°, 45° and 55° dovetail angles were considered. The dovetail fixtures were instrumented with strain gages so that the local normal and shear contact forces could be calculated. The contact force hysteresis loops were recorded showing the stick‐slip history. At R= 0.1, gross slip was observed for several thousand cycles followed by partial slip after the average coefficient of friction increased. At R= 0.5, gross slip was present only during the first half cycle. During partial slip, the slope of the shear versus normal force was a function of the dovetail angle. The local contact loads, therefore, differed for the same remotely applied force. Despite this, the fretting fatigue life depended primarily on the remotely applied load not dovetail angle.  相似文献   

19.
TC4钛合金惯性摩擦焊焊缝微观组织形成的研究   总被引:4,自引:0,他引:4  
利用光学显微镜、扫描电镜、薄膜透射电镜研究了惯性摩擦焊缝组织的形成。结果表明,焊缝组织沿径向有较大的变化。心部为细小的等轴组织,焊口为片状组织,从心部到焊口形成了V字形焊缝。  相似文献   

20.
《材料科学技术学报》2019,35(8):1555-1562
The effect of a gradient nanostructured (GNS) surface layer obtained by ultrasonic surface rolling process (USRP) on the fatigue behavior of Ti-6Al-4 V alloy has been studied in this paper. Microstructure, surface topography, surface roughness and residual stress measurements were performed to characterize the surface under different conditions. Rotating bending fatigue tests were carried out to evaluate the fatigue behavior of different treatments. The results present a remarkable fatigue performance enhancement for the Ti-6Al-4 V alloy with a GNS surface layer obtained by application of USRP with respect to the untreated condition, notwithstanding its considerable surface roughness due to severe ultrasonic impacts and extrusions. Mechanical surface polishing treatment further enhances the beneficial effects of USRP on the fatigue performance. The significantly improved fatigue performance can mainly be ascribed to the compressive residual stress. Simultaneously, the GNS surface layer and surface work hardening have a synergistic effect that accompanies the effect of compressive residual stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号