首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Direct measurements in a wide channel of He II at 1.7 K are presented of quantum turbulence induced by second sound shock (SSS) pulses. Such pulses are moving volume sources of power flux density, with the Vinen and Hall equation not directly applicable. Instead, a fit based on an electric field energy analogy is introduced, a leaky capacitor fit (LCF), for the purpose of extracting a growth and decay characterization of the apparent induced quantum turbulence from the measurements, with the fit parameters tabulated. Also, an explicit energy account is taken of the quantum turbulence as well as of the inducing SSS pulses. Plotting pulse energy transport fraction versus initial energy flux density, a breakpoint energy flux density is proposed for the onset of Gorter–Mellink thermal diffusion in the presence and absence of a quantum turbulence background. This is in contrast with a breakpoint power flux density discussed by previous researchers. This breakpoint energy flux density is about 75 J/m 2 in the absence of a background, in quiescent He II at 1.7 K, and is thus a characteristic of all SSS pulses.  相似文献   

2.
K. Hama  M. Shiotsu 《低温学》2007,47(4):209-219
Film boiling heat transfer coefficients were measured on 10, 30 and 50 mm long vertical plates in subcooled He II for bulk liquid temperatures from 1.8 to 2.1 K. A film boiling model on a vertical plate in subcooled He II was presented based on convection heat transport in the vapor film, radiation heat transport, and heat transport in He II. The numerical solutions of the model were obtained and an equation which can express the numerical solutions within ±5% difference was derived. The equation predicted well the experimental data for lower ΔT range but significantly under-predicted the data for higher ΔT. A correlation of film boiling heat transfer including radiation contribution was presented by modifying the equation based the experimental data. This correlation can describe the experimental data within ±20% difference.  相似文献   

3.
New measurements of second sound attenuation in bulk flowing He II are reported which extend to a region of higher Reynolds number. An expression for the attenuation explicitly containing the quantum vortex line density is developed which allows comparison with vortex line density data taken by other means. A bellows driven experimental apparatus is used to produce bulk flow velocities of 0 to 1 m/sec in a channel of 4.064 mm square internal cross section. Second sound pulses are produced by applying a square voltage pulse 200 s width and variable height to a strain gauge heater. The second sound pulses are detected with thin film sensors mounted 56 and 119 mm downstream. The velocity-dependent attenuation, measured as a function of bulk flow velocity at 1.5, 1.8, and 2.0 K, is compared with data from other researchers. The attenuation, and thus the vortex line density, appears to follow a gradual transition from laminar to turbulent behavior. Current theories do not account for the presence of quantized vortices in bulk flowing He II, where (v nv s), and thus do not explain the observed second sound attentuation in this regime.  相似文献   

4.
The citrate-nitrate gel combustion route was used to prepare SrFe12O19(s) powder sample and the compound was characterized by X-ray diffraction analysis. A solid-state electrochemical cell of the type: (−)Pt, O2(g)/{CaO(s) + CaF2(s)}//CaF2(s)//{SrFe12O19(s) + SrF2(s) + Fe2O3(s)}/O2(g), Pt(+) was used for the measurement of emf as a function of temperature from 984 to 1151 K. The standard molar Gibbs energy of formation of SrFe12O19(s) was calculated as a function of temperature from the emf data and is given by: (SrFe12O19, s, T)/kJ mol−1 (±1.3) = −5453.5 + 1.5267 × (T/K). Standard molar heat capacity of SrFe12O19(s) was determined in two different temperature ranges 130-325 K and 310-820 K using a heat flux type differential scanning calorimeter (DSC). A heat capacity anomaly was observed at 732 K, which has been attributed to the magnetic order-disorder transition from ferrimagnetic state to paramagnetic state. The standard molar enthalpy of formation, (298.15 K) and the standard molar entropy, (298.15 K) of SrFe12O19(s) were calculated by second law method and the values are −5545.2 kJ mol−1 and 633.1 J K−1 mol−1, respectively.  相似文献   

5.
Ablation property of three dimensional carbon fiber reinforced zirconium carbide composite (3D C/ZrC composite) was determined using oxyacetylene torch test with a heat flux of 4187 kW/m2 and flame temperature of over 3000 °C. C/ZrC composite exhibited an excellent configurational stability with a surface temperature of over 2000 °C during 60-300 s period, while 3D C/SiC composite was perforated at 55 s. After ablation for 300 s, the composite showed a mass loss rate of 0.006 g/s and a linear recession rate of 0.004 mm/s. The formation of zirconia melt on the surface of the C/ZrC composite contributed mainly the ablation property improvement. The C/ZrC composite after ablation showed four different layers due to the temperature and pressure gradients: the melting layer, the loose tree-coral-like ZrO2 layer, the undersurface oxidation layer, and the composite layer.  相似文献   

6.
The specific heat of Torlon has been measured in the 0.15-4.2 K temperature range. Data below 1 K can be represented by c(T) = P1T1+δ + P2T3, with P1 = (5.41 ± 0.08)·10−6J K−(2+δ) g−1, P2 = (2.82 ± 0.03) ·10−5JK−4g−1 and δ = 0.28 ± 0.01, as predicted by the tunnelling theory. Above 1 K, the behaviour of c(T) is similar to that of other amorphous materials and can be expressed as: c(T) = P · TΩ with P = (2.68 ± 0.07)·10−5JKΩ+1g−1 and Ω = 3.32 ± 0.02.  相似文献   

7.
In this study, a simple 1D finite element model was developed to predict the temperature evolution and post-fire mechanical degradation of glass fiber reinforced polymers (FRPs) subjected to constant heat fluxes, including 35 kW/m2, 50 kW/m2, 75 kW/m2, and 100 kW/m2. A temperature-dependent post-fire mechanical property model was proposed and implemented. The calculated temperature and residual mechanical moduli showed good agreement with the experimental data. By properly selecting the parameters of the model, an effective strategy was demonstrated to design FRP structure with enhanced durability.  相似文献   

8.
Nucleate boiling heat transfer coefficients (HTCs) of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), and dimethylether (RE170) on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accommodate high vapor pressure refrigerants such as propylene and propane with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 kW m−2 to 10 kW m−2 with an interval of 10 kW m−2 in the pool temperature of 7 °C. Test results exhibited a typical trend that HTCs of flammable refrigerants increase with increasing vapor pressure. Existing nucleate boiling heat transfer correlations showed up to 80% deviation as compared to the present data. Hence a new correlation was developed through a regression analysis taking into account dimensionless variables affecting nucleate boiling heat transfer. The new correlation showed a good agreement with data for flammable refrigerants as well as halogenated refrigerants with a deviation of 5.3%.  相似文献   

9.
Organically modified silicate (ormosil) materials doped with [4,4′-dimethyl-2,2′-bipyridine-bis(2,2′-bipyridine)] ruthenium(II) dichloride ([Ru-mbpy]2+) and [4,4′-dimethylformate-2,2′-bipyridine-bis(2,2′-bipyridine)] ruthenium(II) dichloride ([Ru-dmfbpy]2+) were prepared by a sol-gel procedure for oxygen-sensing applications. The results indicated that the concentrations of the Ru(II) diimine complexes obviously influenced the linearity of Stern-Volmer plots (I0 /I vs. O2%). The best suitable concentrations of [Ru-mbpy]2+ and [Ru-dmfbpy]2+ in the sol for oxygen sensors were found to be 1.0 × 10− 3 M and 2.5 × 10− 3 M, respectively. The fluorescence quenching time and recovery time of oxygen sensor doped with [Ru-mbpy]2+ (1.0 × 10− 3 M) were 18 s and 38 s and those doped with [Ru-dmfbpy]2+ (1.0 × 10− 3 M) were 13 s and 32 s, respectively. The oxygen sensor based on Ru(II) complex modified by esterification demonstrated excellent linear calibration relationship and improved long-term stability.  相似文献   

10.
The spectrophotometric change of a mercury (II) (Hg2+) selective small molecule chemosensor has been successfully converted into a photovoltaic response upon ligating Hg2+. The photon excitation was followed by charge separation facilitated by TiO2 and polyaniline (PANI), resulting in an electron transfer to an electrical back contact. The photoresponse of the Hg2+ selective chromophore was converted to an electron current equivalent to the amount of Hg2+ in solution. The favourable properties of a Hg2+ sensitive chemosensor was combined with the semiconductor capabilities of TiO2 to construct a sensor that is capable of generating a current in the presence of Hg2+ under illumination. A composite of the fluorescent chemosensor rhodamine 6G hydrozone derivative (RS) and PANI was immobilized on indium tin oxide (ITO) plates coated with TiO2 and subjected to photovoltammetric measurements. The photovoltammetric responses of the coated layers were investigated to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The photo-response increased linearly with increasing Hg2+ concentration from 10 to 200 μg L−1 with a limit of quantification (LOQ) of 4 μg L−1. The pH independence for the photoresponse was limited by the TiO2 layer and was optimal between pH 6 and 7.  相似文献   

11.
Nano-sized FeFe2O4 ferrite powder having a heat generation ability in an AC magnetic field was prepared by bead milling for a thermal coagulation therapy application. A commercial powder sample (non-milled sample) of ca. 2.0 μm in particle size showed a temperature enhancement (ΔT) of 3 °C in an AC magnetic field (powder weight 1.0 g, 370 kHz, 1.77 kA m−1) in ambient air. The heat generation ability in the AC magnetic field improved with the milling time, i.e., due to a decrease in the average crystallite size for all the examined ferrites. The highest heat ability (ΔT = 26 °C) in the AC magnetic field in ambient air was for the fine FeFe2O4 powder with a 4.7 nm crystallite size (the samples were milled for 6 h using 0.1 mm? beads). However, the heat generation ability decreased for the excessively milled FeFe2O4 samples having average crystallite sizes of less than ca. 4.0 nm. The heat generation of the samples showed some dependence on the hysteresis loss for the BH magnetic property. The reasons for the high heat generation properties of the milled samples would be ascribed to an increase in the Néel relaxation of the superparamagnetic material. The hysteresis loss in the BH magnetic curve would be generated as the magnetic moment rotates (Néel relaxation) within the crystal. The heat generation ability (W g−1) can be estimated using a 1.07 × 10−4fH2 frequency (f, kHz) and the magnetic field (H, kA m−1) for the samples milled for 6 h using 0.1 mm? beads. Moreover, an improvement in the heating ability was obtained by calcination of the bead-milled sample at low temperature. The maximum heat generation (ΔT = 59 °C) ability in the AC magnetic field in ambient air was obtained at ca. 5.6 nm for the sample calcined at 500 °C. The heat generation ability (W g−1) for this heat treated sample was 2.54 × 10−4fH2.  相似文献   

12.
C.M. Zhou 《Thin solid films》2006,515(3):1223-1227
Regular arrays of Ta nanopillars, 200 nm wide and 500 nm tall, were grown on SiO2 nanosphere patterns by glancing angle sputter deposition (GLAD). Plan-view and cross-sectional scanning electron microscopy analyses show dramatic changes in the structure and morphology of individual nanopillars as a function of growth temperature Ts ranging from 200 to 700 °C. At low temperatures, Ts ≤ 300 °C, single nanopillars develop on each sphere and branch into subpillars near the pillar top. In contrast, Ts ≥ 500 °C leads to branching during the nucleation stage at the pillar bottom. The top branching at low Ts is associated with surface mounds on a growing pillar that, due to atomic shadowing, develop into separated subpillars. At high Ts, the branching occurs during the nucleation stage where multiple nuclei on a single SiO2 sphere develop into subpillars during a competitive growth mode which, in turn, leads to intercolumnar competition and the extinction of some nanopillars.  相似文献   

13.
The energy distribution of sputtered and ionized metal atoms as well as ions from the sputtering gas is reported for a high power impulse magnetron sputtering (HIPIMS) discharge. High power pulses were applied to a conventional planar circular magnetron Ti target. The peak power on the target surface was 1-2 kW/cm2 with a duty factor of about 0.5%. Time resolved, and time averaged ion energy distributions were recorded with an energy resolving quadrupole mass spectrometer. The ion energy distributions recorded for the HIPIMS discharge are broader with maximum detected energy of 100 eV and contain a larger fraction of highly energetic ions (about 50% with Ei > 20 eV) as compared to a conventional direct current magnetron sputtering discharge. The composition of the ion flux was also determined, and reveals a high metal fraction. During the most intense moment of the discharge, the ionic flux consisted of approximately 50% Ti1+, 24% Ti2+, 23% Ar1+, and 3% Ar2+ ions.  相似文献   

14.
In channels filled with the pressurized He II at 1 atm, a continuous thermoacoustic oscillation with a clear sound is triggered above the critical power-input qλ of the phase transition under some conditions. A temperature distribution along the channel length is entirely maintained as long as the thermoacoustic oscillation lasts, i.e. the heat qλ is kept transporting in the vortex state without drying the heater surface.The characteristic frequency of the thermoacoustic oscillation depends both on the channel length and weakly on the bath temperature, reflecting the property of the 1st sound.  相似文献   

15.
We report on the conductivity and adhesion enhancement of indium tin oxide (In2O3:Sn; ITO) nanoparticle films by the application of polymers as matrix material. We fabricated ITO layers at a maximum process temperature of 130 °C by modifying and spin-coating nanoparticulate ITO dispersions. Dispersions containing the organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed to obtain transparent and conducting coatings on substrates which do not withstand high process temperatures like polymers or already processed glasses. The layers were cured by UV-irradiation as well as by low-temperature heat treatment (T = 130 °C) in air and under forming gas atmosphere (N2/H2). The influence of the additives on the electrical, optical, morphological and mechanical layer properties is reported. Compared to best pure ITO layers (3.1 Ω− 1 cm− 1), the ITO-MPTS-PVP nanocomposite coatings exhibit a conductance of 9.8 Ω− 1 cm− 1. Stable sheet resistances of 750 Ω/□ at a coexistent transmittance of 86% at 550 nm for a layer thickness of about 1.3 µm were achieved. The conductance enhancement is a consequence of the consolidation of the ITO nanoparticle network due to the acting shrinkage forces caused either by drying in the case of PVP or UV-irradiation induced condensation and polymerization reactions in the case of MPTS.  相似文献   

16.
We have measured the temperature dependence of the thermal conductivity, κ(T), for DI-BSCCO® tapes fabricated by Sumitomo Electric Industries, Ltd., which are (Bi,Pb)2Sr2Ca2Cu3O8+x tapes sheathed with Ag or Ag-Au alloy. The κ(T) of the tape sheathed with Ag (residual resistance ratio (RRR) = 15) decreases with decreasing temperature and starts to increase rapidly below 60 K, with a maximum at around 15 K. On the other hand, the κ(T) of the tape sheathed with Ag-5.4 wt%Au alloy has a very low value that decreases monotonically with decreasing temperature. At around 77 K, the absolute values of κ(T) for both tapes were about and , respectively. The κ(T) of a stacked sample, in which six DI-BSCCO tapes sheathed with Ag are soldered, was also measured. The measured κ(T) was fairly well reproduced by the estimated κ(T), which was calculated using the measured κ(T) of the single tape and solder.  相似文献   

17.
In coded source neutron imaging the single aperture commonly used in neutron radiography is replaced with a coded mask. Using a coded source can improve the neutron flux at the sample plane when a very high L/D ratio is needed. The coded source imaging is a possible way to reduce the exposure time to get a neutron image with very high L/D ratio. A 17×17 modified uniformly redundant array coded source was tested in this work. There are 144 holes of 0.8 mm diameter on the coded source. The neutron flux from the coded source is as high as from a single 9.6 mm aperture, while its effective L/D is the same as in the case of a 0.8 mm aperture. The Richardson-Lucy maximum likelihood algorithm was used for image reconstruction. Compared to an in-line phase contrast neutron image taken with a 1 mm aperture, it takes much less time for the coded source to get an image of similar quality.  相似文献   

18.
Differential scanning calorimetry (DSC), infrared (IR) and direct current (DC) conductivity studies have been carried out on (100 − 2x)TeO2-xAg2O-xWO3 (7.5 ≤ x ≤ 30) glass system. The IR studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3+1], [WO4] units. Thermal properties such as the glass transition (Tg), onset crystallization (To), thermal stability (ΔT), glass transition width (ΔTg), heat capacities in the glassy and liquid state (Cpg and Cpl), heat capacity change (ΔCp) and ratios Cpl/Cpg of the glass systems were calculated. The highest thermal stability (237 °C) obtained in 55TeO2-22.5Ag2O-22.5WO3 glass suggests that this new glass may be a potentially useful candidate material host for rare earth doped optical fibers. The DC conductivity of glasses was measured in temperature region 27-260 °C, the activation energy (Eact) values varied from 1.393 to 0.272 eV and for the temperature interval 170-260 °C, the values of conductivity (σ) of glasses varied from 8.79 × 10−9 to 1.47 × 10−6 S cm−1.  相似文献   

19.
Compositional and structural evolution of sputtered Ti-Al-N   总被引:1,自引:0,他引:1  
The compositional and structural evolution of Ti-Al-N thin films as a function of the total working gas pressure (pT), the N2-to-total pressure ratio (pN2/pT), the substrate-to-target distance (ST), the substrate position, the magnetron power current (Im), the externally applied magnetic field, and the energy and the ion-to-metal flux ratio of the ion bombardment during reactive sputtering of a Ti0.5Al0.5 target is investigated in detail. Based on this variation we propose that the different poisoning states of the Ti and Al particles of the powder-metallurgically prepared Ti0.5Al0.5 target in addition to scattering and angular losses of the sputter flux cause a significant modification in the Al/Ti ratio of the deposited thin films ranging from ~ 1.05 to 2.15.The compositional variation induces a corresponding structural modification between single-phase cubic, mixed cubic-hexagonal and single-phase hexagonal. However, the maximum Al content for single-phase cubic Ti1−xAlxN strongly depends on the deposition conditions and was obtained with x = 0.66, for the coating deposited at 500 °C, pT = 0.4 Pa, ST = 85 mm, and pN2/pT = 17%. Our results show, that in particular, the N2-to-total pressure ratio in combination with the sputtering power density of the Ti0.5Al0.5 compound target has a pronounced effect on the Al/Ti ratio and the structure development of the coatings prepared.  相似文献   

20.
The paper presents that microwave absorption is tunable with sample thickness over a frequency range if electromagnetic properties of the sample do not change with frequency in that range. The work summarizes the results of polycrystalline samples of two U-type hexaferrite series: Ba4 (Co1−5x P2x)2 Fe36 O60 (0.0 ? x ? 0.20 in step 0.05) and (Ba1−3x La2x)4 Co2 Fe36 O60 (0.10 ? x ? 0.25 in step 0.05) that have been prepared through solid state reaction route. The complex permittivity, permeability and microwave absorbing properties have been discussed in detail for X-band (8.2–12.4 GHz) frequencies. The results show that the substitution of Co2+ ion with P5+ ion and Ba2+ ion with La3+ ion in the U-type-hexaferrite provides the desired electromagnetic properties for a “tuned microwave absorber” in samples with x = 0.05 and 0.20 of first and 0.20 sample of second series. In these samples, the microwave absorption peak (of >98%) shifts linearly from lower to upper side of X-band with sample thickness. These materials can provide significant application for reduction of radar cross section (RCS) and in electromagnetic interference (EMI) shielding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号