首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully dense, monolithic ternary Cr2AlC compounds were synthesized via a powder metallurgical route, and their cyclic oxidation behavior was investigated between 1000 and 1300 °C in air for up to 100 h. At 1000 and 1100 °C, Cr2AlC displayed excellent cyclic oxidation resistance by forming a less than 5 μm-thick Al2O3 oxide layer and a narrow Cr7C3 underlayer. At 1200 and 1300 °C, an outer (Al2O3, Cr2O3)-mixed oxide layer, an intermediate Cr2O3 oxide layer, an inner Al2O3 oxide layer, and a Cr7C3 underlayer formed on the surface. From 1200 °C, scale cracking and spalling began to occur locally to a small extent. At 1300 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids and the spallation of the scales.  相似文献   

2.
High temperature oxidation behavior of the Cr2AlC coating was investigated at 900–1100 °C. During the oxidation, a continuous Al2O3 scale formed, resulting in the improvement of the oxidation resistance of the substrate. Meanwhile, the oxidation induced depletion of Al within the Cr2AlC coating resulted in the transformation of Cr2AlC to Cr–C phases. Compared with bulk Cr2AlC, the Cr2AlC coating possessed similar oxidation behavior, but with higher oxidation rate. This is because a great number of columnar grain boundaries existed in the as-deposited coating, through which oxygen and nitrogen could diffuse inwardly, resulting in the internal oxidation and nitridation.  相似文献   

3.
Preparation of the ternary carbide Cr2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the Cr2O3-Al-Al4C3 powder compact. Effects of the contents of Al and Al4C3 on the product composition and combustion behavior were studied by formulating the reactant mixture with a stoichiometric proportion of Cr2O3:Al:Al4C3 = 3:5x:y, where x and y varied from 1.0 to 1.5. When compared to those of the powder compact with Cr2O3:Al:Al4C3 = 3:5:1 (i.e., x = y = 1.0), the combustion temperature and reaction front velocity increased with content of Al, but decreased with that of Al4C3. Besides Cr2AlC and Al2O3, the final products always contained a secondary phase Cr7C3 that was substantially reduced by adopting additional Al and Al4C3 in the reactant compacts. For the sample with Cr2O3:Al:Al4C3 = 3:7.5:1 (x = 1.5), solid state combustion reached a peak temperature of 1245 °C and yielded Cr2AlC with a trivial amount of Cr7C3. Although Cr7C3 was lessened by introducing extra Al4C3, the increase of Al4C3 from y = 1.1 to 1.5 produced almost no further reduction of Cr7C3 in the final product. This is partly attributed to the low combustion temperature in the range of 1065-1095 °C for the samples with additional Al4C3, and in part, due to the role of Al4C3 which might react with Cr to form Cr7C3, Cr2Al, and Cr2AlC.  相似文献   

4.
Cr2AlC compounds were synthesized via a powder metallurgical route and their long-term oxidation behavior studied. Oxidation at temperatures between 700 and 1,000?°C for up to 360?days in air resulted in formation of a thin, adherent Al2O3 surface layer and a narrow Cr7C3 sublayer, accompanied by evaporation of carbon from the Cr2AlC. Preferential oxidation of Al on the surface suppressed oxidation of the less mobile Cr in Cr2AlC. In the Al2O3 layer, (0.7–8.3)?at.% Cr was incorporated. In the Cr7C3 sublayer, Al was either absent or incorporated. When Cr2AlC oxidized at 850 and 1,000?°C for 30–360?days, metastable θ-Al2O3 blades formed on the α-Al2O3 layer. However, such blades were scarcely visible when the oxidation was carried out above 1,100?°C, because of the fast θ?→?α-transition. Moreover, the θ-Al2O3 were not noticeable during oxidation at 700?°C for 30–360?days, due to a small extent of oxidation.  相似文献   

5.
The oxidation of an Fe-Al alloy containing 3 at.% Al and of four ternary Fe-Cr-Al alloys with the same Al content plus 2, 3, 5 or 10 at.% Cr has been studied in 1 atm O2 at 1000 °C. Both Fe-3Al and Fe-2Cr-3Al formed external iron-rich scales associated with an internal oxidation of Al or of Cr+Al. The addition of 3 at.% Cr to Fe-3Al was able to stop the internal oxidation of Al only on a fraction of the alloy surface covered by scales containing mixtures of the oxides of the three alloy components, but not beneath the iron-rich oxide nodules which covered the remaining alloy surface. Fe-5Cr-3Al formed very irregular external scales where areas covered by a thin protective oxide layer alternated with others covered by thick scales containing mixtures of the oxides of the three alloy components, undergrown by a thin layer rich in Cr and Al, while internal oxidation was completely absent. Conversely, Fe-10Cr-3Al formed very thin, slowly-growing external Al2O3scales, providing an example of third-element effect (TEE). However, the TEE due to the Cr addition to Fe-3Al was not directly associated with a prevention of the internal oxidation of Al, but rather with the inhibition of the growth of external scales containing iron oxides. This behavior has been interpreted on the basis of a qualitative oxidation map for ternary Fe-Cr-Al alloys taking into account the existence of a complete solid solubility between Cr2O3 and Al2O3.  相似文献   

6.
The oxidation behaviour of single crystal PWA 1483 at 950 °C was investigated by means of XRD, SEM and EDS. The parabolic oxidation behaviour, as defined by mass gain and the respective oxide layer thicknesses, is characterized by a parabolic rate constant of about 4 × 10−6 mg2/(cm4 × s) and the formation of a multi-layered oxide scale. An outer scale contains a Ti-bearing thin film composed of TiO2 and NiTiO3 but mostly Cr in Cr2O3 and (Ni/Co)Cr2O4 besides NiTaO4. This outer scale is connected to a discontinuous layer of Al2O3 and an area of γ′-depletion within the base material.  相似文献   

7.
The isothermal oxidation behavior of Cr2AlC coatings on alumina substrates was investigated in the temperature range of 1230 to 1410 °C. The structure, surface morphology, microstructure evolution and chemistry of the reaction products have been investigated. In the investigated temperature range, the Cr2AlC films form a dense continuous oxide scale consisting of α-Al2O3 on Cr carbides. The oxidation rates determined by thermo gravimetric analysis (TGA) were parabolic, indicating that diffusion through the scale is the rate limiting mechanism. The activation energy for oxidation was determined to be 348 kJ mol− 1 and the parabolic rate constant at 1230 °C was 7.1 × 10− 10 kg2 m− 4 s− 1. Hence, the oxidation behavior is comparable to NiAl in the temperature range and time intervals investigated. With increasing oxidation time voids form at the interface between oxide and Cr carbides and the amount of Cr7C3 increases at the expense of Cr3C2. Based on our thermodynamic calculations the oxygen partial pressure below the oxide scale increases as Al is depleted and Cr carbides oxidize, resulting in CO gas- and Cr2O3-formation. The formation of gas may together with the depletion of Al and Cr lead to the significant void formation observed in the Cr carbide interlayer. Observation of both Cr carbide precipitates and the formation of (Al,Cr)2O3 solid solution support this notion. For comparison bulk Cr2AlC was oxidized. It is argued that the absence of pores in oxidized bulk Cr2AlC is due to the considerably larger amount of Al available.  相似文献   

8.
High-purity, dense Cr2AlC compounds were synthesized by hot pressing a mixture of CrC X (x = 0.5) and Al powders. Oxidation at temperatures between 900 and 1200 °C in air for up to 480 h resulted in the formation of a thin Al2O3 layer. The consumption of Al to make the Al2O3 layer led to the enrichment of Cr immediately below the Al2O3 layer, resulting in the formation of an underlying Cr7C3 layer. At the same time, carbon escaped from the Cr2AlC into the air. During the initial stage of oxidation, oxygen diffused inward to form the Al2O3 layer, which vastly improved the oxidation resistance of Cr2AlC from the initial stage of oxidation.  相似文献   

9.
H.T. Ma  C.H. Zhou  L. Wang 《Corrosion Science》2009,51(8):1861-1867
Pure Fe, Cr and Fe-Cr binary alloys were corroded in O2 containing 298 ppm KCl vapour at 750 °C. The corrosion kinetics were determined, and the microstructure and the composition of oxide scales were examined. During corrosion process, KCl vapour reacted with the formed oxide scales and generated Cl2 gas. As Cl2 gas introduced the active oxidation, a multilayer oxide scales consisted of an outmost Fe2O3 layer and an inner Cr2O3 layer formed on the Fe-Cr alloys with lower Cr concentration. In the case of Fe-60Cr or Fe-80Cr alloys, monolayer Cr2O3 formed as the healing oxidation process. However, multilayer Cr2O3 formed on pure Cr.  相似文献   

10.
Early stages of the evolution of Al2O3 scales formed on a FeCrAlRE alloy (Kanthal AF) have been investigated by analytical TEM. The samples were oxidized isothermally at 900 °C in dry O2 or O2 + 40% H2O for 1 h or 24 h. All oxide scales exhibited a two-layered structure, with a continuous inward growing α-Al2O3 inner layer and an outward growing outer layer. After 1 h, the outer oxide layer consisted of γ-Al2O3 in both environments. After 24 h exposure in dry O2, the γ-Al2O3 in the outer oxide layer was partly transformed to α-Al2O3 and spinel oxide (Mg1−xFexAl2O4). In contrast, the γ-Al2O3 in the outer layer was not transformed after 24 h in O2 + 40% H2O, showing that water vapour stabilizes γ-Al2O3. All oxide scales contained a Cr-rich band, a product of the initial oxidation. The inner α-Al2O3 layer is suggested to nucleate on Cr2O3 or Cr2−xFexO3 in the initial oxide.  相似文献   

11.
Cr2AlC compounds were synthesized by a powder metallurgical route and corrosion tested at 900, 1000, 1100 and 1200 °C for up to 150 h under an Ar/1% SO2 gas atmosphere. The compounds were resistant to corrosion because a thin ??-Al2O3 barrier layer quickly formed on the surface which suppressed sulfidation. Virtually no sulfur was detected inside the scale except during the initial corrosion stage. The superior corrosion resistance of Cr2AlC originated from the high affinity of Al for oxygen to form the thermodynamically stable Al2O3. Unlike Al, Cr was not active because Cr was strongly bound to carbon as Cr2C layers in Cr2AlC. The small amount of Cr2O3 that had formed was dissolved in the Al2O3 layer. The corrosion of Cr2AlC resulted in the formation of an ??-Al2O3 layer and an underlying Cr7C3 layer.  相似文献   

12.
A Cr2AlC coating was deposited on a β-γ TiAl alloy. Isothermal oxidation tests at 700 °C and 800 °C, and thermocyclic oxidation at 800 °C were performed in air. The results indicated that serious oxidation occurred on the bare alloy. Thick non-protective oxide scales consisting of mixed TiO2 + α-Al2O3 layers formed on the alloy surface. The coated specimens exhibited much better oxidation behaviour by forming an Al-rich oxide scale on the coating surface during the initial stages of oxidation. This scale acts as diffusion barrier by effectively blocking the ingress of oxygen, and effectively protects the coated alloys from further oxidation.  相似文献   

13.
Cr2AlC coating was deposited at 370 and 500 °C by D.C. magnetron sputtering from an as-synthesized bulk Cr2AlC target. The phase composition and preferential orientation of the coating were investigated using XRD, and the microstructure of the coating was characterized by TEM. Results indicated that Cr2AlC coating with a strong (110) preferential orientation could be obtained. The coating microstructure was clearly affected by the deposition temperature. At 370 °C, the deposited coating possessed a triple-layered structure with an α-(Cr, Al)2O3 inner layer, an amorphous intermediate layer and a crystalline Cr2AlC outer layer. However, the coating deposited at 500 °C had a single-layered structure consisting of crystalline Cr2AlC layer. The growth mechanism of the Cr2AlC coating at different deposition temperatures is discussed.  相似文献   

14.
This paper addresses the oxidation behaviour of Ti–Al–C films composed mainly of a Ti2AlC phase. The films exhibited rather low oxidation rates at 600 and 700 °C, with an oxygen-rich zone or a thin oxide layer appearing on the film surfaces. Much faster oxidation rates were observed at 800 and 900 °C. The Ti2AlC phase was quickly consumed by oxidation. From the film surface to the inner zone, TiO2-rich layer, Al2O3-rich layer, and TiO2 + Al2O3 mixed layer was observed, respectively. The oxidation mechanism of the Ti–Al–C film is discussed based on the experimental results.  相似文献   

15.
In this work, phase pure Cr2AlC and impure Cr2AlC with Cr7C3 have been fabricated to investigate the mechanical, thermal, and electrical properties. The thermal expansion coefficient is determined as 1.25 × 10−5 K−1 in the temperature range of 25-1200 °C. The thermal conductivity of the Cr2AlC is 15.73 W/m K when it is measured at 200 °C. With increasing temperature from 25 °C to 900 °C, the electrical conductivity of Cr2AlC decreases from 1.8 × 106 Ω−1 m−1 to 5.6 × 105 Ω−1 m−1. For the impure phase of Cr7C3, it has a strengthening and embrittlement effect on the bulk Cr2AlC. And the Cr2AlC with Cr7C3 would result in a lower high-temperature thermal expansion coefficient, thermal conductivity, specific heat capacity and electrical conductivity.  相似文献   

16.
Isothermal oxidation behaviour of two Ti(C,N)-based cermets (TiC-10TiN-16Mo-6.5WC-0.8C-0.6Cr3C2-(32-x)Ni-xCr, x = 0 and 6.4 wt%) was investigated in air at 800-1100 °C up to 2 h. Mass gains exhibited neither linear nor parabolic law during isothermal oxidation. The oxide scales formed at 800-1100 °C were multi-layered, consisting of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. The internal oxidation zones formed at 1000-1100 °C consisted of Ti-based, Ni-based and Mo-based complex oxides. Cermet with 6.4 wt% Cr exhibited superior oxidation resistance, due to the presences of Cr0.17Mo0.83O2 in TiO2-based innerlayer of the oxide scale and Cr-rich Ti-based complex oxide in the internal oxidation zone.  相似文献   

17.
The oxidation behaviour of Ti2AlC bulk and high velocity oxy-fuel spray deposited coatings has been investigated for temperatures up to 1200 °C. X-ray diffraction and electron microscopy show that bulk Ti2AlC forms a continuous layer of α-Al2O3 below a layer of TiO2 at temperatures as low as 700 °C. Oxidation of the Ti2AlC coatings is more complex, and also involves the phases Ti3AlC2, TiC, and TixAly, formed during the spraying process. α-Al2O3 is observed, however, it is unevenly distributed deep into the material, and does not form a continuous layer essential for good oxidation resistance.  相似文献   

18.
T. Dudziak  H.L. Du 《Corrosion Science》2009,51(5):1189-1196
In this paper, we present the sulphidation/oxidation behaviour of a Ti45Al8Nb (at%) alloy coated with different protective surface films. Two intermetallic coatings are considered; TiAlCr and Al2Au deposited by physical vapour deposition. The coated alloy was subjected to a H2/H2S/H2O yielding pS2 - 10−1 Pa and pO2 - 10−18 Pa potentials at 750 °C for up to 1000 h. The corrosion kinetics were determined by means of discontinuous gravimetry and the as-received and exposed samples were characterised using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD). The materials showed the development of a multilayered structure. In the case of the TiAlCr coated Ti45Al8Nb - base alloy, Al2O3, TiO2 and Cr2S3 developed. For the Al2Au coated Ti45Al8Nb samples an Al2O3 scale containing TiO2 nodules was observed at the surface.  相似文献   

19.
The effect of different sintering additives on the high temperature oxidation and corrosion behaviour of silicon nitride based ceramics was investigated. Comparative tests were conducted at 1200 and 1500 °C in air, in water vapour, and with the highly corrosive gases HCl and SO2. Si3N4 was prepared with MgO, Al2O3, Y2O3 and Al2O3 + Y2O3 sintering additives. Hot pressed discs were tested for a total time of up to 128 h. The electrically conductive ceramic composites Si3N4 + TiN and Si3N4 + MoSi2 were also tested under the same conditions. The effects that the different corrosion environments have on the different ceramics are presented. SEM studies of the oxidised ceramics show the direct transformation of Si3N4 grains into SiO2 through a reaction interface layer.  相似文献   

20.
Low-temperature hot corrosion tests were performed on bulk Cr2AlC MAX phase compounds for the first time. This material is a known alumina-former with good oxidation and Type I high-temperature hot corrosion resistance. Unlike traditional (Ni,Co)CrAl alumina formers, it contains no Ni or Co that may react with Na2SO4 salt deposits needed to form corrosive mixed (Ni,Co)SO4–Na2SO4 eutectic salts active in Type II hot corrosion. Cr2AlC samples coated with 20K2SO4–80Na2SO4 salt were exposed to 300 ppm SO2 at 700 °C for times up to 500 h. Weight change, recession, and cross-sectional microstructures identified some reactivity, but much reduced (<?1/10) compared to a Ni(Co) superalloy baseline material. Layered Al2O3/Cr2O3 scales were indicated, either separated by or intermixed with some retained salt. However, there was no conclusive indication of salt melting. Accelerated oxidation was proposed to explain the results, and coarse Cr7C3 impurities appeared to play a negative role. In contrast, the superalloy exhibited outer Ni(Co) oxide and inner Cr2O3 scales, with Cr–S layers at the interfaces. Massive spallation of the corrosion layers occurred repeatedly for the superalloy, but not at all for Cr2AlC. This indicates some potential for Cr2AlC as LTHC-resistant coatings for superalloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号