首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrodeposition of Zn1−xCdxSe polycrystalline semiconducting thin films from aqueous acidic bath without any additives onto tin oxide-coated conducting glass and titanium substrates are described. The influence of deposition parameters on the film formation and deposition mechanism based on cyclic voltammetry is discussed. X-ray diffraction studies showed the polycrystalline wurtzite nature for all the films deposited under the proposed conditions. The optical studies revealed the band gap values in the range between 2.82 and 1.72 eV as the film composition changes from ZnSe to CdSe. It has been observed that the concentration of cadmium salt plays an essential role on the alloy formation. The surface morphological studies and composition analysis were carried out and the results are discussed.  相似文献   

2.
CuInxGa1−xSe2 (CIGS) polycrystalline thin films with various Ga to In ratios were grown using a new two-step electrodeposition process. This process involves the electrodeposition of a Cu–Ga precursor film onto a molybdenum substrate, followed by the electrodeposition of a Cu–In–Se thin film. The resulting CuGa/CuInSe bilayer is then annealed at 600°C for 60 min in flowing Argon to form a CIGS thin film. The individual precursor films and subsequent CIGS films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and Auger electron spectroscopy. The as-deposited precursor films were found to be crystalline with a crystal structure matching that of CuGa2. The annealed bi-layers were found to have the same basic chalcopyrite structure of CuInSe2, but with peak shifts due to the Ga incorporation. Energy dispersive spectroscopy results show that the observed shifts correlate to the composition of the films.  相似文献   

3.
We have fabricated 13.7%- and 7.3%-efficient CuIn1−xGaxSe2 (CIGS)-based devices from electrodeposited and chemical bath deposited precursors. As-deposited precursors are Cu-rich films and polycrystalline (grain size is very small) in nature. Only preliminary data is presented on chemical bath deposited precursors. Additional In, Ga, and Se were added to the precursor films by physical evaporation to adjust the final composition to CuIn1−xGaxSe2. Addition of In and Ga and also selenization at high temperature are very crucial to obtain high efficiency devices. Three devices with Ga/(In+Ga) ratios of 0.16, 0.26, and 0.39 were fabricated from electrodeposited precursors. The device fabricated from the chemical bath deposited precursor had a Ga/(In+Ga) ratio of 0.19. The films/devices have been characterized by inductive-coupled plasma spectrometry, Auger electron spectroscopy, X-ray diffraction, electron-probe microanalysis, current-voltage characteristics, capacitance–voltage, and spectral response. The compositional uniformity of the electrodeposited precursor films both in the vertical and horizontal directions were studied. The electrodeposited device parameters are compared with those of a 17.7% physical vapor deposited device.  相似文献   

4.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

5.
Electrochromic films of NiOx and WOxPy were produced by the spray pyrolysis technique. The nickel-oxide-based coatings were obtained from both an alcoholic solution of nickel nitrate and aqueous solution of the mixture nickel nitrate/cobalt nitrate. Coatings obtained from alcoholic solutions showed a noticeable contrast of optical transmittance from fully bleached to colored state. X-ray diffraction analysis showed a slight crystallization in NiOx after electrochemical treatment: one diffraction peak for as-deposited films turned to three diffraction peaks for electrochemical treated samples. Coatings obtained from aqueous solution of mixture nickel nitrate/cobalt nitrate showed an optimized electrochromic behavior at a Ni:Co proportion of 90:10. At this condition an optical contrast of 50% is found. X-ray diffraction showed that these samples comprised a phase mixture of Co3O4 and NiO.WOxPy samples were obtained from polytungsten gel in which H3PO4 was added. We found that for 8.3 at% of P:W, the electrochromism was optimized. Pyrolytic coatings of WOxPy show superior behavior than those of WOx obtained by spray pyrolysis, both in optical contrast and durability.  相似文献   

6.
Polycrystalline Cd1−xZnxTe solar cells with efficiency of 8.3% were grown by cathodic electrodeposition on glass/ITO/CdS substrates using non-aqueous ethylene glycol bath. The deposit is characterised versus the process conditions by XRD and found to possess a preferred (1 1 1) orientation on Sb doping in the electroplating bath. The surface morphology of the deposit is studied using atomic force microscope. The average RMS roughness for the ternary film was higher than that for the binary CdTe. Optical properties of the films were carried out to study the band gap and calculation of molar concentration ‘x’. The effects of Sb doping in CdS/Cd1−xZnxTe heterojunctions have been studied. The short circuit current density (c) was found to improve and series resistance (Rs) reduced drastically upon Sb doping. This improvement in Jsc is attributed to an increase in quantum efficiency. The evaluation of solar cell parameters was also carried out using the current–voltage characteristics in dark and illumination. The best results were obtained when 2×10−3 M ZnCl2 along with antimony were present in the deposition bath. Under AM 1.5 conditions the open circuit voltage, short circuit current density, and fill factor of our best cell were Voc=600 mV, Jsc=26.66 mA/cm2, FF=0.42 and efficiency, η=8.3%. The carrier concentration and built-in potential of Cd1−xZnxTe calculated from Mott–Schottky plot was 2.72×1017 cm−3 and 1.02 eV.  相似文献   

7.
Cd-rich CdxHg1 − xTe films have been electrodeposited under potentiostatic conditions on conducting glass and Ti substrates from an acidic solution containing the respective ions as Cd2+:Hg2+:HTeO2+ = 100:1:2. Six films one after another have been prepared from a single electrochemical cell. EDAX analysis of the air annealed films show decreasing Hg content in the deposit as the number of film preparation increases. SEM analysis indicate undulatory surface with Hg-rich clusters at the top surface. XRD analysis indicate the presence of CdxHg1 − xTe along with . The CdxHg1 − xTe alloy formation have been confirmed from Raman shift measurements which change with composition, x. The as-deposited films are n-type but converts to p-type after air annealing. Spectral response measurements gave band gap values that change with Hg content in the deposit. Band gap values ranging from 1.1 eV to 1.45 eV have been estimated. Photoelectrochemical solar cells using polysulphide electrolyte have been fabricated which gave an open-circuit photovoltage and short-circuit photocurrent, respectively, as 325 mV and 5.5 mA/cm2 under 60 mW/cm2 intensity of illumination.  相似文献   

8.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

9.
ZnxCd1−xO thin films were prepared on glass substrates by spray pyrolysis technique. The precursor solutions were obtained by varying the concentration of Zn(NO3)2·6H2O and Cd(NO3)2·4H2O in bi-distilled water. The structural properties have been studied using X-ray diffraction spectra. All the structures include the basic compounds, i.e. ZnO and CdO. The orientation and the crystalline phases of the deposited films were specified. With the addition of Zn to the precursor solution, we can observe the preferential orientation of the CdO in the [2 0 0] direction. The electrical measurements were performed using method of four contacts. Thin films transmittances, in the 1.5–4.3 eV range, for different compositions have been measured and the optical gaps have been determined. The variations are explained considering the gaps of the two pure films. The influence of increased Cd concentration in the films on the structural, electrical and optical properties is investigated in this study.  相似文献   

10.
By rapid thermal processing of Cu/In/GaS precursors, good-quality CuIn1–xGaxS2 films are synthesized. By suppressing the formation of In-rich hillocks, we could obtain homogeneous CuIn1–xGaxS2 surfaces. A conversion efficiency of 12% has been achieved using a relatively low (1.2) Cu/In ratio.  相似文献   

11.
Electrochromic films of NiOx and WOx were produced by the spray pyrolysis technique. The nickel-oxide-based coatings were obtained from an aqueous solution of nickel nitrate. Those obtained below 300° C did not show any diffraction peak when subjected to X-ray diffraction analysis, and those obtained above 400° C showed a diffraction pattern corresponding to cubic NiO. Films obtained below 300° C showed an electrochromic effect with an electrochromic efficiency of 30 cm2/C.Tungsten-oxide-based coatings were obtained from a solution of H2WO4 in aqueous ammonia. The films were grown at 150° C, and they showed a diffraction pattern corresponding to monoclinic WO3 when subjected to a post-heat treatment at 400° C during ten minutes. The WOx films showed a noticeable electrochromism under cation insertion, and presented an electrochromic efficiency of 42 cm2/C. Both as-deposited and heat-treated samples showed good electrochromism.  相似文献   

12.
A series of CdS1−xSex thin films have been deposited on fluorine doped tin oxide (FTO) coated glass substrates by chemical bath deposition. The influences of S/Se ratio in the precursor solution and annealing treatment on the structural, morphological, compositional, optical, and photoelectrochemical properties of the films were investigated. X-ray diffraction patterns revealed that the hexagonal cadmium cyanamide and the solid solutions of CdS1−xSex were formed. The morphological and compositional studies indicated that the thin film was composed of cadmium cyanamide sheets in the upper layer and CdS1−xSex spherical grains in the underlying layer. The optical absorption studies revealed that the band gap of unannealed and annealed films varied from 2.4 eV to 1.94 eV and from 2.35 eV to 1.67 eV as x increased from 0 to 1, respectively. The photo responses well agreed with the optical absorption of these films. The annealed CdSe shows the best photoresponse with a photon-to-current efficiency of 1.69% at 0.27 V (versus SCE).  相似文献   

13.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

14.
HgxCd1−xTe thin films in the compositional range x=0.05–0.6 were grown on SnO2-coated glass substrates using the electrodeposition technique. The electrochemical bath consisted of aqueous solutions of CdCl2, HgCl2 and Te reacted with HNO3, along with a complexing agent CH3CN (acetonitrile). The conditions for the growth of HgCdTe from such a bath were ascertained with the help of cyclic voltammetry (CV) curves. Studies indicate that single-phase HgCdTe can be electrodeposited from the bath only if it is thoroughly mixed over a period of time, prior to the deposition. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy and electron microprobe studies. XRD data show that single-phase material was obtained over the whole range of compositions studied. The films were polycrystalline having the cubic fcc structure and the (1 1 1) orientation. The best stoichiometry HgCdTe films grown from the baths of composition X=0.15, 0.3 and 0.6 were obtained at deposition potentials 0.65, 0.7 and 0.75 V (versus saturated calomel electrode (SCE)) respectively, the corresponding film compositions being x=0.16, 0.4 and 0.6, respectively.  相似文献   

15.
Polycrystalline thin films of CuIn1−xGaxTe2 have been deposited by flash evaporation on Corning glass 7059 substrates at Ts=200°C. Hall and resistivity measurements have been carried out down to 77 K. These films are p-type and the variation of the resistivity may be linked to defects, disorder of the material or grain boundaries. The PL spectra of these films after annealing in argon atmosphere at Ta=450°C have showed a broad band emission between 0.98 and 1.12 eV in which the main peak appears at 1.05 eV (at 4.2 K).  相似文献   

16.
WO3 thin films were fabricated by sol–gel method using polyethylene glycol (PEG) as dispersing agent. Physical and photoelectrochemical properties of the synthesized nanocrystalline films were studied by varying weight ratio of PEG to tungsten precursor (x). Based on AFM observations and statistical modeling of the WO3 surface, the thickness of the films increased by increasing the amount of x with a nearly linear fashion while the surface roughness reached to a saturated value. However, the film synthesized with x = 4 showed a chaotic surface behavior. Optical analysis revealed that by increasing the x, transmittance of the films decreased while their band gap energies remained unchanged. According to XRD results, variation of x did not change structure of the nanocrystalline film while XPS analysis indicated a better stoichiometry for the films with higher x values. A less charge transport life time was obtained for films with higher x values, but an enhanced photoresponse of the films and also hydrogen production via water splitting reaction were observed by increasing the amount of x. On the other hand, the charge transfer resistance of the samples reduced from 6.5 kΩ to 1.2 kΩ by addition of PEG to the sol from x = 0 to x = 2.  相似文献   

17.
II–VI polycrystalline semiconducting materials have come under increased scrutiny because of their wide use in the cost reduction of devices for photovoltaic applications. Cd1−xZnxSe is an important semiconducting alloy because of the tunability of its physical parameters such as band gap and lattice parameters by controlling its stoichiometry. Many more material characteristics of it would be altered and excellently controlled by controlling system composition x.Polycrystalline thin films of Cd1−xZnxSe with variable composition (0x1) have been deposited onto ultra-clean glass substrates by sintering process. The optical, structural and electrical transport properties of Cd1−xZnxSe thin films have been examined. The optical band gap and optical constants of these films were determined by using double beam spectrophotometer. The DC conductivity and activation energy of the films were measured in vacuum by two-probe technique. The Schottky junction of Cd1−xZnxSe with indium was made and the barrier height and ideality factor were determined using current–voltage characteristics. The nature of sample, crystal structure and lattice parameters were determined from X-ray diffraction patterns. The films were polycrystalline in nature having cubic zinc-blende structure over the whole range studied.Sintering is very simple and viable compared to other cost intensive methods. The results of the present investigation will be useful in characterizing the material, Cd1−xZnxSe, for its applications in photovoltaics.  相似文献   

18.
NiOxHy films were prepared by DC magnetron sputtering in H2/O2 atmosphere. NiOxHy coatings with transparency and high electrochromic efficiency were obtained by changing H2 content. A 60 nm thick NiOxHy film with transmittance of 0.57 (as-deposited state), 0.78 (bleached state) and 0.24 (coloured state) at wavelength of 550 nm was deposited in an atmosphere of H2(60%)+O2(40%). Analysis of infrared spectra (60002400 cm−1) showed that the absorption peaks for bleached and colored states are associated with free ‘OH’ and OH stretching vibrations, respectively. XPS Ni2p core level spectra of colored NiOxHy film exhibited a peak at 856.2±0.2 eV which is attributed to Ni3+. Ni2p core level spectra of the bleached and as-deposited films exhibited two peaks at 856.4±0.2 and 854.6±0.2 eV which are attributed to Ni3+ and Ni2+.  相似文献   

19.
Cd1−xZnxTe alloy films with 1.6 and 1.7 eV band gaps were deposited by RF magnetron sputtering from targets made either of mixed powders or alloys of CdTe and ZnTe (25% and 40%). High-quality polycrystalline films with the (1 1 1) preferred orientation were obtained. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, resistivity, optical absorption, Raman, and photoluminescence. The EDS, XRD, and optical absorption analysis indicated that the x-value of the as-grown films were typically 0.20 and 0.30 for films sputtered from 25% and 40% ZnTe containing targets, respectively. The as-deposited alloy films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. Therefore, we have studied various post-deposition treatments with vapors of chlorine-containing materials, CdCl2 and ZnCl2, in dry air or H2/Ar ambient at 390 °C. The best performance of a Cd1−xZnxTe cell (, ) was found for treatment with vapors of the mixed CdCl2+0.5%ZnCl2 in an H2/Ar ambient after pre-annealing at 520 °C in pure H2/Ar.  相似文献   

20.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号