共查询到20条相似文献,搜索用时 46 毫秒
1.
推荐系统中,基于聚类的协同过滤推荐算法利用K-means等算法对用户和物品进行聚类,聚类结果里用户或物品只能属于一个类别,然而在实际应用中,一个用户可以有多种兴趣,一个物品也可以属于多个类别。针对上述问题,提出了一种基于谱聚类群组发现的算法,该算法通过谱聚类和C-means聚类得到用户和物品相似度较高的群组以及用户和物品归属于群组的隶属度矩阵,而且用户或物品可以属于多个群组。通过计算用户在各个群组中对物品的偏好值,并结合用户和物品在群组里相应的隶属度来预测用户对物品最终的偏好值,生成对用户的Top-N推荐结果。实验结果表明,与以往推荐算法相比,本方法在降低了数据稀疏性的同时提高了推荐结果的准确率和召回率。 相似文献
2.
随着互联网的发展,用户倾向于在购物、旅游、用餐之前参考线上评论.之后,他们也会发表评论来表达自身意见.线上评论越来越具有价值.评论对用户决策的重要导向作用催生了虚假评论.虚假评论,指用户由于利益、个人偏见等因素发布的不符合产品真实特性的评论.这些虚假评论语言上模仿真实评论,消费者很难识别出来.国内外学者综合运用自然语言处理技术来研究虚假评论检测问题.从特征工程的角度分析,虚假评论检测方法可以分为三类:基于语言特征和行为特征的方法、基于图结构的方法、基于表示学习的方法.主要描述了检测的一般流程,归纳了三类研究方法常用的特征,比较了方法的优缺点,并且介绍了研究常用的数据集.最后探讨了未来研究方向. 相似文献
3.
针对在电子商务平台上检测编写虚假评论的水军群组的问题,提出了基于带权评论图的水军群组检测算法(WGSA)。首先,利用共评论特征构建带权评论图,权重由一系列群组造假指标计算得到;然后,为边权重设置阈值筛选可疑子图;最后,从图的社区结构出发,利用社区发现算法生成最终的水军群组。在Yelp大型数据集上的实验结果表明,与K均值聚类算法(KMeans)、基于密度的噪声应用空间聚类算法(DBscan)以及层次聚类算法相比WGSA算法的准确度更高,同时对检测到水军群组的特征与差异作了分析,发现水军群组的活跃度不同,危害也不同。其中,高活跃度群组危害最大,应重点关注。 相似文献
4.
现有基于密度的聚类方法主要用于点数据的聚类,不适用于大规模轨迹数据。针对该问题,提出一种利用群组和密度的轨迹聚类算法。根据最小描述长度原则对轨迹进行分段预处理找出具有相似特征的子轨迹段,通过两次遍历轨迹数据集获取基于子轨迹段的群组集合,并采用群组搜索代替距离计算减少聚类过程中邻域对象集合搜索的计算量,最终结合群组和密度完成对轨迹数据集的聚类。在大西洋飓风轨迹数据集上的实验结果表明,与基于密度的TRACLUS轨迹聚类算法相比,该算法运行时间更短,聚类结果更准确,在小数据集和大数据集上的运行时间分别减少73.79%和84.19%,且运行时间的减幅随轨迹数据集规模的扩大而增加。 相似文献
5.
一种基于谱聚类的半监督聚类方法 总被引:6,自引:1,他引:6
半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。提出一种基于谱聚类的半监督聚类算法,其利用标签数据的信息,调整点与点之间的距离所形成的距离矩阵,而后基于被调整的距离矩阵进行谱聚类。实验表明,该算法较之于已提出的半监督聚类算法,获得了更好的聚类性能。 相似文献
6.
7.
8.
谱聚类是近年来出现的一类性能优越的聚类算法,能对任意形状的数据进行聚类, 但算法对尺度参数比较敏感,利用聚类集成良好的鲁棒性和泛化能力,本文提出了基于谱聚类的聚类集成算法.该算法首先利用谱聚类算法的内在特性构造多样性的聚类成员; 然后,采用连接三元组算法计算相似度矩阵,扩充了数据点之间的相似性信息;最后,对相似度矩阵使用谱聚类算法得到最终的集成结果. 为了使算法能扩展到大规模应用,利用Nystrm采样算法只计算随机采样数据点之间以及随机采样数据点与剩余数据点之间的相似度矩阵,从而有效降低了算法的计算复杂度. 本文算法既利用了谱聚类算法的优越性能,同时又避免了精确选择尺度参数的问题.实验结果表明:较之其他常见的聚类集成算法,本文算法更优越、更有效,能较好地解决数据聚类、图像分割等问题. 相似文献
9.
针对网络故障检测中利用先验知识不足和多数谱聚类算法需事先确定聚类数的问题,提出一种新的基于成对约束信息传播与自动确定聚类数相结合的半监督自动谱聚类算法。通过学习一种新的相似性测度函数来满足约束条件,改进NJW聚类算法,对非规范化的Laplacian矩阵特征向量进行自动谱聚类,从而提高聚类性能。在UCI标准数据集和网络实测数据上的实验表明,该算法较相关比对算法聚类准确率更高,可满足网络故障检测的实际需要。 相似文献
10.
受经济利益驱使,大量恶意用户发布包含不实内容的虚假评论以影响用户的购买决策,从而提高自身商品的销售业绩并打压竞争对手,严重扰乱电子商务运营秩序。为此,介绍虚假评论识别的研究成果,包括虚假评论内容、发布者及虚假评论者群组的识别,对识别过程所使用的特征及检测方法进行对比分析,并给出虚假评论识别效果的评价方式和指标。在此基础上,对未来虚假评论识别研究工作进行探讨和展望。 相似文献
11.
针对传统的三维(3D)人脸识别算法仅考虑特征提取而不能很好地运用于实际视频人脸识别系统的问题,提出一种基于格拉斯曼流形谱聚类的动态3D视频全自动识别系统。首先通过去除孤立点、均匀采样、剪裁、姿势纠正等过程将3D视频数据集进行规范化;然后从训练视频的不同位置提取出可变长度的局部视频片段,使用基于谱聚类的高效算法将其表示为格拉斯曼流形上的点;最后,将所得到的聚类中心和测试视频中的点相匹配,并且利用基于表决的策略来完成测试视频的人脸识别。在大型通用3D视频数据库BU4DFE上的实验验证了该算法的有效性。实验结果表明,与几种较为先进的视频人脸识别算法相比,该算法取得了更好的识别效果。 相似文献
12.
《计算机应用与软件》2014,(8)
研究基于无监督式聚类的入侵检测算法,提出一种无监督式方法来检测和鉴定未知的异常行为。该方法不依赖于具有标签的数据流。这种无监督的检测采用的是健壮的数据聚类技术,并结合了证据累积的子空间聚类和交互式聚类结果协同的方法来探测性地识别网络数据流量的异常。实验结果表明该无监督式检测技术提高了检测的鲁棒性,检测到的异常行为特征是通过构建高效规则来描述的。检测过程和特征表述的性能在实时网络环境下得到验证。 相似文献
13.
研究提出了一种混合属性样本的量子聚类算法,并应用于入侵检测的研究。通过给出一种新的混合属性的相异性度量方式和挖掘样本中的结构信息,并用量子势能确定聚类中心,提出了一种新的距离量子聚类MDQC(Weighted Mahalanobis Distance_based Quantum Clustering)算法,该算法具有自学习能力。并基于该算法提出了一种新的异常检测方法。仿真实验表明,该检测方法是有效的,有一定的实用价值。 相似文献
14.
通常无监督算法在对高光谱数据进行聚类时仅使用光谱信息,忽略了空间信息,使得聚类准确率较低.针对上述问题提出一种基于深度谱空网络和无监督判别极限学习的高光谱图像聚类算法.利用深度谱空网络对高光谱数据进行光谱特征和空间特征的分层交叉学习,通过反复学习获得深度空谱特征,为后续无监督聚类提供方便.在三种高光谱图像上进行实验,结... 相似文献
15.
针对异常入侵检测技术中传统聚类方法需要被检测类大小均衡的问题,在商空间粒度理论的基础上,论述了商空间粒度变换可以使复杂问题在不同的粒度世界求解,最终使整个问题得到简化。分析了商空间划分与聚类操作的相似性,提出了基于商空间的粒度聚类方法。将该方法与入侵检测技术相结合,构建了基于商空间粒度聚类的入侵检测系统,用于对KDD CUP 1999数据集的异常入侵检测,实验结果表明该入侵检测系统的性能明显优于基于传统聚类方法的入侵检测系统,从而证明了该方法的正确性和有效性。 相似文献
16.
《计算机应用与软件》2016,(12)
为了能够快速有效地发现复杂网络中的局部社团,提出一种基于节点内聚系数的局部社团发现算法。该算法选取最大度节点作为起始社团,不断搜索其邻居节点,将满足条件的节点不断加入起始社团从而形成新的社团。在不同规模的真实网络数据集和人工合成数据集上进行实验,并与其他三种局部社团发现算法进行社团划分效果的对比。实验结果表明,该算法能够在较短的运行时间内保持较高模块度来识别复杂网络中的局部社团结构,更适合于大规模复杂网络的社团结构挖掘。 相似文献
17.
《计算机应用与软件》2016,(11)
提出一种基于频谱包络特征提取的PUE(Primary User Emulation)攻击检测方法。在论证频谱包络起伏特征可以作为指纹特征提取的基础上,结合曲线拟合,选取特征参数,构建能够明显反映频谱包络起伏特征的向量,通过FCM聚类区分主用户和PUE攻击用户。仿真实验表明,该方法能够有效区分主用户和PUE攻击用户,具有较好的可行性和可靠性。 相似文献
18.
针对入侵检测方法中模糊C-均值(FCM)聚类算法对初始值敏感和要求输入聚类数目的缺点,把人工免疫网络算法用于FCM聚类算法,提出了一种基于人工免疫网络和模糊C-均值的入侵检测方法.通过KDD_CUP1999数据集仿真试验,与FCM算法相比,该算法提高了检测率,降低了误警率.实验结果表明,该方法能够有效地检测网络中的入侵行为. 相似文献
19.
传统的入侵检测方法在面对多变的网络结构时缺乏可扩展性,而且在未知的攻击类型面前也缺乏适应性。因此,提出一种新的检测方法——基于遗传聚类的网络异常检测(NAIDGC)算法。对聚类中心采用二进制编码,把每一个点到它们各自的聚类中心的欧几里得距离的总和作为相似度量,通过遗传算法寻找聚类中心。计算机仿真结果显示了此算法对入侵检测是有效的。 相似文献
20.
针对目前网络入侵检测率低、误报率高的问题,提出一种基于半监督聚类云模型动态加权的入侵检测方法。由于属性对分类贡献程度不同,引入云相对贴近度的概念给出计算属性权重的方法。以半监督聚类算法为基础建立云模型,并对属性使用动态加权,通过对云模型的更新逐渐强化云分类器指导数据的分类。通过实验证明了该方法的可行性与有效性。 相似文献