首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
闫钧华  侯平  张寅  吕向阳  马越  王高飞 《计算机应用》2021,41(11):3178-3184
针对图像混合失真类型判定难的问题,在深度学习多标签分类思想的基础上,提出了一种基于多尺度多分类器卷积神经网络(CNN)的混合失真类型判定方法。首先,从图像中截取得到含有高频信息的图像块,将该图像块输入到不同感受野的卷积层中以提取图像的浅层特征图;其次,将浅层特征图输入到各子分类器结构中以进行深层次的特征提取和融合,将融合的特征通过Sigmoid分类器得到判定结果;最后,将各子分类器的判定结果进行融合得到图像的混合失真类型。实验结果表明,在自然场景混合失真数据库(NSMDID)上,所提方法对图像中存在的混合失真类型的平均判定准确率可以达到91.4%,且对大部分类型的判定准确率都在96.8%以上,可见所提方法能够对混合失真图像中的失真类型进行有效的判定。  相似文献   

2.
针对图像失真分类问题,提出了一种基于Gabor小波和卷积神经网络(convolutional neural network,CNN)的失真类型判定算法。该算法先利用Gabor小波的良好特性对图像进行特征粗提取,再通过改进的CNN进一步提取关键特征。算法步骤包括:首先对图像进行预处理(包括标签设定、样本均衡和样本扩充);然后对预处理后的图像进行八方向的Gabor小波变换,并将不同方向的子带叠加构成输入样本;最后通过自行设计的CNN和Softmax分类器对样本进行训练,训练过程中采用随机梯度下降和反向误差传播的方法对卷积核参数进行优化得到最终模型。对训练好的模型进行失真类型判定实验,在LIVE标准图像库上分类正确率达95.62%,表明本算法具有较高的准确性和鲁棒性。  相似文献   

3.
4.
关系抽取是自然语言中的一项重要任务,其结果对后续的信息抽取和自动问答系统有重要的影响。随着深度学习的日益火热,基于卷积神经网络的实体关系抽取已取得了不错的结果。不过词向量表示比较单一,提取的特征也有限。针对这个问题,将Word2vec训练的词向量和由自然语言处理工具得出的依存关系对分别作为模型两通道的输入向量,使用双通道卷积神经网络提取特征来实现实体关系抽取。该模型可以提取更深层的语义信息,并取得了比传统词向量更好的效果。  相似文献   

5.
目的 图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法 首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果 本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 dB与29.17 dB的效果。结论 本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。  相似文献   

6.
针对交通标志图像易受复杂背景、光照、运动模糊等影响导致识别率低和识别速度慢的问题,提出了基于非对称双通道卷积神经网络的交通标志识别方法.通过不同网络结构的两通路提取丰富的特征信息,上层通路使用跃层连接提取的浅层局部特征和深层全局特征,与下层通路提取的精细特征在全连接层进行融合,并使用激活函数LReLUs代替脆弱的ReL...  相似文献   

7.
为了提高手势识别过程中识别率,提出了一种基于双通道卷积神经网络(CNN)的识别算法.首先,对原始手势图像进行预处理,得到手部边缘图像;然后,分别选取手势图像和手部边缘图像作为CNN的两个输入通道;最后,在全连接层进行特征融合,并用SoftMax分类器对输出结果进行分类.通过实验证明:该算法能有效提高手势识别率,达到99...  相似文献   

8.
为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接层,同时将两通道卷积神经网络的第一池化层提取的特征也直接送到全连接层,使提取得到的初级和高级特征图在全连接层上进行融合,融合后的数据输入到Softmax分类器进行分类。不同算法在fashion-mnist和CIFAR-10数据库上的对比仿真结果表明,本文模型获得了较高的分类准确率。  相似文献   

9.
针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不同卷积层提取的特征连接起来作为此通道最后一层卷积层的输入,有益于局部特征和全局特征的结合。接着,通过将不同通道融合后的特征输入亚像素卷积实现超分辨率重建。实验结果表明,相比其他方法,该方法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。  相似文献   

10.
11.
基于多尺度分块卷积神经网络的图像目标识别算法   总被引:1,自引:0,他引:1  
针对图像在平移、旋转或局部形变等复杂情况下的识别问题,提出一种基于非监督预训练和多尺度分块的卷积神经网络(CNN)目标识别算法。算法首先利用不含标签的图像训练一个稀疏自动编码器,得到符合数据集特性、有较好初始值的滤波器集合。为了增强鲁棒性,同时减小下采样对特征提取的影响,提出一种多通路结构的卷积神经网络,对输入图像进行多尺度分块形成多个通路,每个通路与相应尺寸的滤波器卷积,不同通路的特征经过局部对比度标准化和下采样后在全连接层进行融合,从而形成最终用于图像分类的特征,将特征输入分类器完成图像目标识别。仿真实验中,所提算法对STL-10数据集和遥感飞机图像的识别率较传统的CNN均有提高,并对图像各种形变具有较好的鲁棒性。  相似文献   

12.
徐超  闫胜业 《计算机应用》2017,37(6):1708-1715
为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人检测方法。改进主要涉及两个方面:如何决定CNN样本迭代学习次数和如何进行重合窗口的合并。首先,关于CNN样本迭代次序问题,在顺序迭代训练多个CNN分类模型的基础上,提出一种基于校验集正确率及其在迭代系列分类器中展现出的稳定性进行更优模型选择的策略,以使最终选择的分类器推广能力更优。其次,提出了一种不同于非极大值抑制(NMS)的多个精确定位回归框合并机制。精确定位回归框的获取以CNN检测过程输出的粗定位框作为输入。然后,对每个粗定位框应用CNN精确定位过程并获得对应的精确定位回归框。最后,对多个精确定位回归框进行合并,合并过程考虑了每个精确定位回归框的正确概率。更精确地说,最终的合并窗口是基于多个相关的精确定位回归框的概率加权求和方式获得。针对提出的两个改进,在国际上广泛使用的行人检测公共测试数据集ETH上进行了一系列实验。实验结果表明,所提的两个改进方法均能有效地提高系统的检测性能,在相同的测试条件下,融合两个改进的方法相比Fast R-CNN算法检测性能提升了5.06个百分点。  相似文献   

13.
廖斌  李浩文 《计算机应用》2019,39(1):267-274
针对在传统机器学习方法下单幅图像深度估计效果差、深度值获取不准确的问题,提出了一种基于多孔卷积神经网络(ACNN)的深度估计模型。首先,利用卷积神经网络(CNN)逐层提取原始图像的特征图;其次,利用多孔卷积结构,将原始图像中的空间信息与提取到的底层图像特征相互融合,得到初始深度图;最后,将初始深度图送入条件随机场(CRF),联合图像的像素空间位置、灰度及其梯度信息对所得深度图进行优化处理,得到最终深度图。在客观数据集上完成了模型可用性验证及误差估计,实验结果表明,该算法获得了更低的误差值和更高的准确率,均方根误差(RMSE)比基于机器学习的算法平均降低了30.86%,而准确率比基于深度学习的算法提高了14.5%,所提算法在误差数据和视觉效果方面都有较大提升,表明该模型能够在图像深度估计中获得更好的效果。  相似文献   

14.
程广涛  巩家昌  李建 《计算机应用》2020,40(5):1465-1469
针对传统烟雾检测方法中提取的图像特征鲁棒性较差的问题,提出了基于稠密卷积神经网络(DenseNet)的烟雾识别方法。首先,利用卷积操作和特征图融合构建稠密网络块,在卷积层之间设计稠密连接机制,以增强稠密网络块结构内的信息流通和特征重利用;然后,将已构建的稠密网络块叠加成稠密卷积神经网络用于烟雾识别,节省计算资源的同时提升对烟雾图像特征的表达能力;最后,针对烟雾图像数据量较小的问题,采取数据增强技术进一步改善训练模型的识别能力。在公开烟雾数据集上对提出的方法进行实验验证,实验结果表明,所提方法的模型大小只有0.44 MB,在两个测试集上的准确率分别为96.20%和96.81%。  相似文献   

15.
对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.0066。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。  相似文献   

16.
刘兵  张鸿 《计算机应用》2016,36(2):531-534
针对基于内容的图像检索(CBIR)中低层视觉特征与用户对图像理解的高层语义不一致以及传统的距离度量方式难以真实反映图像之间相似程度等问题,提出了一种基于卷积神经网络(CNN)和流形排序的图像检索算法。首先,将图像输入CNN,通过多层神经网络对图像的监督学习,提取网络中全连接层的图像特征;其次,对图像特征进行归一化处理,然后用高效流形排序(EMR)算法对查询图像所返回的结果进行排序;最后,根据排序的结果返回最相似的图像。在corel数据集上,深度图像特征比基于场景描述的图像特征的平均查准率(mAP)提高了53.74%,流形排序比余弦距离度量方式的mAP提高了18.34%。实验结果表明,所提算法能够有效地提高图像检索的准确率。  相似文献   

17.
回声隐藏是一种以音频为载体的隐写技术,目前针对回声隐藏的隐写分析方法主要以倒谱系数作为手工特征进行分类。然而,这些传统方法普遍在回声幅度较低时检测性能不高。针对回声幅度较低的情况,提出一种基于卷积神经网络(CNN)的回声隐藏隐写分析方法。首先利用短时傅里叶变换(STFT)提取音频的幅度谱系数矩阵作为浅层特征,然后设计了一个卷积神经网络框架对浅层特征进行进一步的深度特征提取,网络框架中包含了四个卷积模块以及三层全连接层,最后分类结果以Softmax进行输出。在三种经典的回声隐藏算法上对提出的方法进行了隐写分析实验评估,实验结果表明,该方法在低回声幅度条件下的检测率分别为98.62%、98.53%和93.20%,与目前所提出的传统基于手工特征的方法和基于深度学习的方法相比,检测性能提升10%以上。  相似文献   

18.
陆金刚  张莉 《计算机应用》2019,39(12):3445-3449
针对尺度和视角变化导致的监控视频和图像中的人数估计性能差的问题,提出了一种基于多尺度多列卷积神经网络(MsMCNN)的密集人群计数模型。在使用MsMCNN进行特征提取之前,使用高斯滤波器对数据集进行处理得到图像的真实密度图,并且对数据集进行数据增强。MsMCNN以多列卷积神经网络的结构为主干,首先从具有多尺度的多个列中提取特征图;然后,用MsMCNN在同一列上连接具有相同分辨率的特征图,以生成图像的估计密度图;最后,对估计密度图进行积分来完成人群计数的任务。为了验证所提模型的有效性,在Shanghaitech数据集和UCF_CC_50数据集上进行了实验,与经典模型Crowdnet、多列卷积神经网络(MCNN)、级联多任务学习(CMTL)方法、尺度自适应卷积神经网络(SaCNN)相比,所提模型在Shanghaitech数据集Part_A和UCF_CC_50数据集上平均绝对误差(MAE)分别至少减小了10.6和24.5,均方误差(MSE)分别至少减小了1.8和29.3;在Shanghaitech数据集Part_B上也取得了较好的结果。MsMCNN更注重特征提取过程中的浅层特征的结合以及多尺度特征的结合,可以有效减少尺度和视角变化带来的精确度偏低的影响,提升人群计数的性能。  相似文献   

19.
为解决噪声环境下语音识别率降低以及传统波束形成算法难以处理空间噪声的问题,基于双微阵列结构提出了一种改进的最小方差无畸变响应(MVDR)波束形成方法。首先,采用对角加载提高双微阵列增益,并利用递归矩阵求逆降低计算复杂度;然后,通过后置调制域谱减法对语音作进一步处理,解决了一般谱减法容易产生音乐噪声的问题,有效减小了语音畸变,获得了良好的噪声抑制效果;最后,采用卷积神经网络(CNN)进行语音模型的训练,提取语音深层次的特征,有效地解决了语音信号多样性问题。实验结果表明,提出的方法在经CNN训练的语音识别系统模型中取得了较好的识别效果,在信噪比为10 dB的F16噪声环境下的语音识别率达到了92.3%,具有良好的稳健性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号