首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
设计了一种基于FPGA的低功耗深度可分离卷积加速核;根据PW卷积和DW卷积计算中的共性,采用一种固定乘法阵列通过改变特征和权重输入数据流的方式实现两种卷积的计算结构,最大化DSP的利用率;针对8位非对称量化中符号位可能会溢出的问题,采用符号位单独处理的方法重新封装了双乘法器结构;通过层内7级流水结构保证每个周期数据处理的并行度;在Zynq UltraScale+系列FPGA上成功部署了加速结构;经实验测试,提出的加速结构在提高网络推理速度的同时降低了片上资源的依赖度和整体功耗,原生MobilenetV2在所提FPGA加速器上的平均吞吐率高达130.6GOPS且整体功耗只有4.1w,满足实时边缘计算的要求;相比其他硬件平台,能效比有明显提升;与FPGA上的同类型加速器相比,在性能密度(GOPS/LUT)、功率效率(GOPS/W)和DSP效率(GOPS/DSP)上均有优势。  相似文献   

2.
近年来,随着人工智能技术的发展,卷积神经网络(CNN)作为深度学习技术中的常用算法,在计算机视觉、语音识别及自然语言处理等诸多领域得到了广泛的应用.可编程门阵列(FPGA)因其高并行度和高灵活性等优势常被用于CNN的加速.基于此,本文对高性能CNN加速器的设计进行研究.文中采用DSP的级联、卷积核数据的"乒-乓"结构,...  相似文献   

3.
基于卷积神经网络的景象匹配算法较传统方法具有更高的匹配精度、更好的适应性以及更强的抗干扰能力。但是,该算法有海量的计算与存储需求,导致在边缘端部署存在巨大困难。为了提升计算实时性,文中设计并实现了一种高效的边缘端加速计算方案。在分析算法的计算特性与整体架构的基础上,基于Winograd快速卷积方法,设计了一种面向特征匹配层的专用加速器,并提出了利用专用加速器与深度学习处理器流水线式计算特征匹配层和特征提取网络的整体加速方案。在Xilinx的ZCU102开发板上进行实验发现,专用加速器的峰值算力达到576 GOPS,实际算力达422.08 GOPS,DSP的使用效率达4.5 Ope-ration/clock。加速计算系统的峰值算力达1 600 GOPS,将CNN景象匹配算法的吞吐时延降低至157.89 ms。实验结果表明,该加速计算方案能高效利用FPGA的计算资源,实现CNN景象匹配算法的实时计算。  相似文献   

4.
针对高效视频编解码标准中后处理CNN算法在通用平台运行时产生的高延时缺点,提出一种基于现场可编程逻辑门阵列(FPGA)的后处理卷积神经网络硬件并行架构。提出的并行架构通过改进输入与输出缓冲的数据并发过程,调整卷积模块整体并行度,加快模块硬件流水。实验结果表明,基于本文所提出的并行架构设计的CNN硬件加速器在Xilinx ZCU102上处理分辨率为176×144视频流,计算性能相当于每秒360.5 GFLOPS,计算速度可满足81.01 FPS,相比时钟频率4 GHz的Intel i7-4790K,计算速度加快了76.67倍,相比NVIDIA GeForce GTX 750Ti加速了32.50倍。在计算能效比方面,本文后处理CNN加速器功耗为12.095 J,能效比是Intel i7-4790K的512.90倍,是NVIDIA GeForce GTX 750Ti的125.78倍。  相似文献   

5.
针对基于嵌入式现场可编程门阵列(FPGA)平台的卷积神经网络加速器由于资源有限导致处理速度受限的问题,提出一种高性能卷积神经网络加速器.首先根据卷积神经网络和嵌入式FPGA平台的特点,设计软硬件协同操作架构;然后在存储资源和计算资源的限制下,分别提出二维直接内存存取分块和权衡数字信号处理单元与查找表使用的优化策略;最后针对人脸检测的应用,对SSD网络模型进行优化,采用软硬件流水结构,提高人脸检测系统的整体性能.在Xilinx ZC706开发板上实现此加速器,实验结果表明,该加速器可达到167.5 GOPS的平均性能和81.2帧/s的人脸检测速率,其平均性能和人脸检测速率是嵌入式GPU平台TX2的1.58倍.  相似文献   

6.
狄新凯  杨海钢 《计算机工程》2021,47(7):189-195,204
为消除卷积神经网络前向计算过程中因模型参数的稀疏性而出现的无效运算,基于现场可编程门阵列(FPGA)设计针对稀疏化神经网络模型的数据流及并行加速器。通过专用逻辑模块在输入通道方向上筛选出特征图矩阵和卷积滤波器矩阵中的非零点,将有效数据传递给由数字信号处理器组成的阵列做乘累加操作。在此基础上,对所有相关的中间结果经加法树获得最终输出特征图点,同时在特征图宽度、高度和输出通道方向上做粗颗粒度并行并寻找最佳的设计参数。在Xilinx器件上进行实验验证,结果表明,该设计实现VGG16卷积层综合性能达到678.2 GOPS,性能功耗比为69.45 GOPS/W,其性能与功耗指标较基于FPGA的稠密网络加速器和稀疏网络加速器有较大提升。  相似文献   

7.
为提升轻量级卷积神经网络在硬件平台的资源利用效率和推理速度,基于软硬件协同优化的思想,提出一种面向FPGA平台的轻量级卷积神经网络加速器,并针对网络结构的特性设计专门的硬件架构。与多级并行策略结合,设计一种统一的卷积层计算单元。为降低模型存储成本、提高加速器的吞吐量,提出一种基于可微阈值的选择性移位量化方案,使计算单元能够以硬件友好的形式执行计算。实验结果表明,在Arria 10 FPGA平台上部署的MobileNetV2加速器能够达到311 fps的推理速度,相比CPU版本实现了约9.3倍的加速比、GPU版本约3倍的加速比。在吞吐量方面,加速器能够实现98.62 GOPS。  相似文献   

8.
为提升在资源、功耗受限的嵌入式平台上运行的深度卷积网络算法的速度和能效,提出一种基于现场可编程门阵列(FPGA)的卷积并行加速方案。利用卷积层与批归一化(batch normalization,BN)层融合减少计算复杂度;利用数据分片减少片上存储消耗;利用数据复用、并行计算提升运算速度,减少系统硬件开销;利用设计空间探索找到最符合硬件资源约束的计算并行度。实验结果表明,在100MHz的工作频率下,加速器的峰值计算性能可以达到52.56GFLOPS,性能是CPU的4.1倍,能耗仅为GPU的9.9%,与其它FPGA方案相比综合性能有一定的提升。  相似文献   

9.
基于神经网络的方法计算量通常十分庞大,限制方法在嵌入式场景领域的应用.为了解决这一问题,文中提出基于异构现场可编程门阵列的卷积网络加速器.采用滑动窗并行加速卷积计算过程,可同时处理不同输入、输出通道的卷积过程.同时结合网络量化过程进行8 bit定点加速器设计,降低计算资源的使用.实验表明,文中定点加速器运算速度较快,功耗较小,算法性能损失较小.  相似文献   

10.
基于嵌入式平台的复杂背景目标跟踪技术在智能视频监控设备、无人机跟踪等领域有重要作用.卷积神经网络在跟踪问题上有准确率高、鲁棒性强的优点,但基于卷积特征的算法计算复杂度高,受嵌入式平台面积和功耗的限制,实时性难以满足嵌入式平台应用场景的需求.针对基于卷积特征的跟踪算法计算复杂度高、存储参数量大的难题,率先提出一种利用FPGA实现基于卷积神经网络的复杂背景目标跟踪硬件加速架构.该方法通过利用KL相对熵对目标跟踪算法Siamese-FC进行定点量化,设计了基于通道并行的卷积层加速架构.实验结果表明,定点量化后跟踪算法相比于原算法的平均精度损失不超过4.57%,FPGA部署后前向推理耗时仅为CPU的16.15%,功耗仅为CPU的13.7%.  相似文献   

11.
卷积神经网络具有参数大、运算量大的特点,当将其具体应用在移动端设备时,需要在满足帧率(速度)的前提下,尽量减少功耗与芯片面积.考虑满足现有移动端网络的兼容性、性能和面积等因素,设计一个基于3D可扩展PE阵列的CNN加速器.该加速器兼容3×3卷积、3×3深度可分离卷积、1×1卷积和全连接层,其PE阵列能根据具体应用的网络...  相似文献   

12.
作为深度学习算法之一的卷积神经网络在多个领域有着重要的应用.因为其网络模型的规模和结构比较复杂,数据量较大,故需要考虑降低其对计算资源的要求.一般地,对于大数据量的计算任务,需要使用数据并行的方法进行任务的划分计算,而仅使用数据并行而对计算的任务的特点不加以结合,其数据传输量较高.因此需要通过对CNN网络结构及其计算特性的分析,设计合理的计算任务划分策略,减少数据的传输量.本文首先介绍了深度学习加速器中对计算任务的优化处理,接着介绍BWDSP的众核深度学习加速器的体系架构,并设计计算划分策略,基于VGGNet-16网络模型进行实验对比分析.实验结果表明该优化算法可以显著的提高数据传输的性能,降低数据的传输量.  相似文献   

13.
巩杰  赵烁  何虎  邓宁 《计算机工程》2022,48(3):170-174+196
深度卷积神经网络(CNN)模型中卷积层和全连接层包含大量卷积操作,导致网络规模、参数量和计算量大幅增加,部署于CPU/GPU平台时存在并行计算性能差和不适用于移动设备环境的问题,需要对卷积参数做量化处理并结合硬件进行加速设计。现场可编程门阵列(FPGA)可满足CNN并行计算和低功耗的需求,并具有高度的灵活性,因此,基于FPGA设计CNN量化方法及其加速系统。提出一种通用的动态定点量化方法,同时对网络的各个层级进行不同精度的量化,以减少网络准确率损失和网络参数的存储需求。在此基础上,针对量化后的CNN设计专用加速器及其片上系统,加速网络的前向推理计算。使用ImageNet ILSVRC2012数据集,基于VGG-16与ResNet-50网络对所设计的量化方法和加速系统进行性能验证。实验结果显示,量化后VGG-16与ResNet-50的网络规模仅为原来的13.8%和24.8%,而Top-1准确率损失均在1%以内,表明量化方法效果显著,同时,加速系统在运行VGG-16时,加速效果优于其他3种FPGA实现的加速系统,峰值性能达到614.4 GOPs,最高提升4.5倍,能耗比达到113.99 GOPs/W,最高提升4.7倍。  相似文献   

14.
随着人工智能的快速发展,卷积神经网络(CNN)在很多领域发挥着越来越重要的作用。分析研究了现有卷积神经网络模型,设计了一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在卷积运算中四个维度方向实现了并行化计算;提出了参数化架构设计,在三种参数条件下,单个时钟周期分别能够完成512、1024、2048次乘累加;设计了片内双缓存结构,减少片外存储访问的同时实现了有效的数据复用;使用流水线实现了完整的神经网络单层运算过程,提升了运算效率。与CPU、GPU以及相关FPGA加速方案进行了对比实验,实验结果表明,所提出的设计的计算速度达到了560.2 GOP/s,为i7-6850K CPU的8.9倍。同时,其计算的性能功耗比达到了NVDIA GTX 1080Ti GPU的3.0倍,与相关研究相比,所设计的加速器在主流CNN网络的计算上实现了较高的性能功耗比,同时不乏通用性。  相似文献   

15.
具有优越性能的卷积神经网络算法已得到广泛应用,但其参数量大、计算复杂、层间独立性高等特点也使其难以高效地部署在较低功耗和较少资源的边缘场景.为此结合该种算法的特点提出了一种基于混合架构的卷积神经网络计算加速方法,该方法选用CPU加FPGA的混合架构,对网络模型进行了压缩优化;在FPGA上通过指令控制数据流的DSP阵列结...  相似文献   

16.
In this paper, we propose a novel Convolutional Neural Network hardware accelerator called CoNNA, capable of accelerating pruned, quantized CNNs. In contrast to most existing solutions, CoNNA offers a complete solution to the compressed CNN acceleration, being able to accelerate all layer types commonly found in contemporary CNNs. CoNNA is designed as a coarse-grained reconfigurable architecture, which uses rapid, dynamic reconfiguration during CNN layer processing. The CoNNA architecture enables the on-the-fly selection of the CNN network that should be accelerated and also supports the acceleration of CNN networks with dynamic topology. Furthermore, by being able to directly process compressed feature and kernel maps, and skip all ineffectual computations during CNN layer processing, the CoNNA CNN accelerator is able to achieve higher CNN processing rates than some of the previously proposed solutions. The CoNNA architecture has been implemented using Xilinx ZynqUtrascale+ FPGA family and compared with seven previously proposed CNN hardware accelerators. Results of the experiments seem to indicate that the CoNNA architecture is up to 14.10, 6.05, 4.91, 2.67, 11.30, 3.08 and 3.58 times faster than previously proposed MIT's Eyeriss, NullHop, NVIDIA's Deep Learning Accelerator (NVDLA), NEURAghe, CNN_A1, fpgaConvNet, and Deephi's Aristotle CNN accelerators respectively, while using identical number of computing units and operating at the same clock frequency.  相似文献   

17.
雷小康  尹志刚  赵瑞莲 《计算机应用》2020,40(10):2811-2816
针对卷积神经网络(CNN)在资源受限的硬件设备上运行功耗高及运行慢的问题,提出一种基于现场可编程门阵列(FPGA)的CNN定点计算加速方法。首先提出一种定点化方法,并且每层卷积设计不同的尺度参数,使用相对散度确定位宽的长度,以减小CNN参数的存储空间,而且研究不同量化区间对CNN精度的影响;其次,设计参数复用方法及流水线计算方法来加速卷积计算。为验证CNN定点化后的加速效果,采用了人脸和船舶两个数据集进行验证。结果表明,相较于传统的浮点卷积计算,所提方法在保证CNN精度损失很小的前提下,当权值参数和输入特征图参数量化到7-bit时,在人脸识别CNN模型上的压缩后的权重参数文件大小约为原来的22%,卷积计算加速比为18.69,同时使FPGA中的乘加器的利用率达94.5%。实验结果表明了该方法可以提高卷积计算速度,并且能够高效利用FPGA硬件资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号