首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
胡雪影  郭海儒  朱蓉 《计算机应用》2020,40(7):2069-2076
针对传统图像超分辨率重建方法存在的重建图像模糊、噪声量大、视觉感差等问题,提出了一种基于混合深度卷积网络的图像超分辨率重建方法。首先,在上采样阶段将低分辨率图像放缩至指定大小;然后,在特征提取阶段提取低分辨率图像的初始特征;接着,将提取到的初始特征送入卷积编解码结构进行图像特征去噪;最后,在重建层用空洞卷积进行高维特征提取与运算,重建出高分辨率图像,并且使用残差学习快速优化网络,在降低噪声的同时,使重建图像的清晰度及视觉效果更优。在Set14数据集放大尺度×4的基准下,将所提方法与双三次插值(Bicubic)、锚定邻域回归(A+)、超分辨卷积神经网络(SRCNN)、极深度超分辨网络(VDSR)、编解码网络(REDNet)等超分辨率重建方法进行对比。在超分辨实验中,所提方法与对比方法比较,峰值信噪比(PSNR)分别提升了2.73 dB、1.41 dB、1.24 dB、0.72 dB和1.15 dB,结构相似性(SSIM)分别提高了0.067 3,0.020 9,0.019 7,0.002 6和0.004 6。实验结果表明,混合深度卷积网络能够有效地对图像进行超分辨率重建。  相似文献   

2.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

3.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

4.
现有的图像超分辨率重建算法可以改善图像整体视觉效果或者提升重建图像的客观评价值,然而对图像感知效果和客观评价值的均衡提升效果不佳,且重建图像缺乏高频信息,导致纹理模糊。针对上述问题,提出了一种基于并联卷积与残差网络的图像超分辨率重建算法。首先,以并联结构为整体框架,在并联结构上采用不同卷积组合来丰富特征信息,并加入跳跃连接来进一步丰富特征信息并融合输出,从而提取更多的高频信息。其次,引入自适应残差网络以补充信息并优化网络性能。最后,采用感知损失来提升恢复后图像的整体质量。实验结果表明,相较于超分辨率卷积神经网络(SRCNN)、深度超分辨率重建网络(VDSR)和超分辨率生成对抗网络(SRGAN)等算法,所提算法在重建图像上有更好的表现,其放大效果图的细节纹理更清晰。在客观评价上,所提算法在4倍重建时的峰值信噪比(PSNR)和结构相似性(SSIM)相较于SRGAN分别平均提升了0.25 dB和0.019。  相似文献   

5.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

6.
为更有效地提升图像的超分辨率(SR)效果,提出了一种多阶段级联残差卷积神经网络模型。首先,该模型采用了两阶段超分辨率图像重建方法先重建2倍超分辨率图像,再重建4倍超分辨率图像;其次,第一阶段与第二阶段皆使用残差层和跳层结构预测出高分辨率空间的纹理信息,由反卷积层分别重建出2倍与4倍大小的超分辨率图像;最后,以两阶段的结果分别构建多任务损失函数,利用第一阶段的损失指导第二阶段的损失,从而提高网络的训练速度,加强网络学习中的监督指导。实验结果表明,与bilinear算法、bicubic算法、基于卷积神经网络的图像超分辨率(SRCNN)算法和加速的超分辨率卷积神经网络(FSRCNN)算法相比,所提模型能更好地重建出图像的细节和纹理,避免了经过迭代之后造成的图像过度平滑,获得更高的峰值信噪比(PSNR)和平均结构相似度(MSSIM)。  相似文献   

7.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。  相似文献   

8.
单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经网络直接推导高分辨率图像(HR),该方法采用多阶段学习策略,首先推理出高分辨率图像对应的小波系数,然后重建超分辨率图像(SR).为了获取更多的信息,该方法采用一种残差嵌套残差的灵活可扩展的深度神经网络.此外,提出的神经网络模型采用结合图像空域与小波域的损失函数进行优化求解.所提出的方法在Set5、Set14、BSD100、Urban100等数据集上进行实验,实验结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于相关的图像超分辨率方法.  相似文献   

9.
贾凯  段新涛  李宝霞  郭玳豆 《计算机应用》2018,38(12):3563-3569
针对单通道图像超分辨率方法难以同时实现快速的收敛性能以及高质量的纹理细节恢复的问题,提出一种基于双通道卷积神经网络的图像超分辨率增强算法。首先,网络分为深层通道和浅层通道,深层通道用于提取图像的详细纹理信息,浅层通道用于恢复图像的总体轮廓。然后,深层通道利用残差学习的优势,加深网络并降低模型参数规模,消除因网络过深导致的网络退化问题,构造长短期记忆块消除由反卷积层造成的伪影现象和噪声,采用多尺度方式,提取图像不同尺度的纹理信息,而浅层通道只需负责恢复图像主要轮廓。最后,融合两通道损失对网络不断优化,指导网络生成高分辨率图像。实验结果表明,相比基于深层和浅层卷积神经网络的端到端图像超分辨率算法(EEDS),所提算法收敛更迅速,图像边缘和纹理重建效果明显提升,其峰值信噪比(PSNR)和结构相似性(SSIM)在Set5数据集上平均提高了0.15 dB、0.0031,在和Set14数据集上平均提高了0.18 dB、0.0035。  相似文献   

10.
针对极深神经网络图像超分辨率重建过程中,存在图像特征提取少、信息利用率低,平等处理高、低频信息通道的问题,提出了残差卷积注意网络的图像超分辨率重建算法。构造多尺度残差注意块,最大限度地提高网络提取到多尺寸特征信息,引入通道注意力机制,增强高频信息通道的表征能力。引入卷积注意块的特征提取结构,减少高频图像细节信息的丢失。在网络的重建层,引入全局跳远连接结构,进一步丰富重建的高分辨率图像信息的流动。实验结果表明,所提算法在Set5等基准数据集上的PSNR、SSIM比其他基于深度卷积神经网络的方法均明显提升,验证了提出方法的有效性与先进性。  相似文献   

11.
Gao  Min  Han  Xian-Hua  Li  Jing  Ji  Hui  Zhang  Huaxiang  Sun  Jiande 《Multimedia Tools and Applications》2020,79(7-8):4831-4846

In recent years, CNN has been used for single image super-resolution (SR) with its success of in the field of computer vision. However, in the recovery process, there are always some high-frequency components that cant be recovered from low-resolution images to high-resolution ones by using existing CNN-based methods. In this paper, we propose an image super-resolution method based on CNN, which uses a two-level residual learning network to learn residual components, i.e., high-frequency components. We use the Super-Resolution Convolutional Neural Network (SRCNN) as the network structure in each level so that our proposed method can achieve the high-resolution images with high-frequency components that cant be obtained by the existing methods. In addition, we analyze the proposed method with considering three kinds of residual learning networks, which are different in the structure and superimposed layers of the residual learning network. In the experiments, we investigate the performance of the proposed method with various residual learning networks and the effect of image super-resolution to image captioning task.

  相似文献   

12.
林静  黄玉清  李磊民 《计算机应用》2020,40(8):2345-2350
由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。  相似文献   

13.
张晔  刘蓉  刘明  陈明 《计算机应用》2022,42(5):1563-1569
针对现有的图像超分辨率重建方法存在生成图像纹理扭曲、细节模糊等问题,提出了一种基于多通道注意力机制的图像超分辨率重建网络。首先,该网络中的纹理提取模块通过设计多通道注意力机制并结合一维卷积实现跨通道的信息交互,以关注重要特征信息;然后,该网络中的纹理恢复模块引入密集残差块来尽可能恢复部分高频纹理细节,从而提升模型性能并产生优质重建图像。所提网络不仅能够有效提升图像的视觉效果,而且在基准数据集CUFED5上的结果表明所提网络与经典的基于卷积神经网络的超分辨率重建(SRCNN)方法相比,峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了1.76 dB和0.062。实验结果表明,所提网络可提高纹理迁移的准确性,并有效提升生成图像的质量。  相似文献   

14.
针对卷积神经网络中的图像超分辨率重建模型训练不稳定与收敛速度较慢等问题,提出一种可嵌入式并行网络框架(EPNF),用于单幅图像超分辨率重建任务。将现有的图像超分辨率网络模型作为EPNF框架的深层结构部分嵌入到该框架中,能够以较小参数代价加快所嵌入的超分辨率模型的收敛速度,在一定程度上提高模型的准确率。在EPNF网络结构的基础上,提出一种新的超分辨率重建方法EPNF_DCSR,采用稠密跳跃连接构造高分辨率(HR)图像的高频成分,并使用单层卷积构造HR图像的低频成分,合成一幅HR输出图像。实验结果表明,与当前主流的图像超分辨率算法相比,EPNF_DCSR具有更好的图像生成效果。  相似文献   

15.
单幅图像超分辨率(Super Resolution,SR)重建,是计算机视觉领域的一个经典问题,其目的在于从一个低分辨率图像得到一个高分辨率图像。目前的卷积神经网络重建算法只有三层结构,浅层结构在处理内部结构复杂的数据时,会出现表征能力不足的问题,因此提出了一个基于特征转移的八层卷积神经网络结构来实现图像超分辨率重建。针对不同的测试集,提出的卷积神经网络模型取得了更佳的超分辨率结果,不管是在主观视觉上还是在客观评价指标上均有明显改善,把数据集图像放大3倍时,对于不同算法的对比图像,该算法的峰值信噪比最高,而且在清晰度方面尤其是图像纹理边缘得到了增强。实验结果证明了基于迁移转移的八层卷积神经网络对图像超分辨率重建的有效性,且网络的收敛速度更快,在精细度方面具有更高的优势。  相似文献   

16.
图像超分辨率重建旨在依据低分辨率图像重建出接近真实的高分辨率图像,现有基于卷积神经网络的图像超分辨率重建方法存在网络参数量大、重建速度慢等问题,从而限制其在内存资源小的终端设备上的应用。提出一种基于深度可分离卷积的轻量级图像超分辨率重建网络,利用深度可分离卷积提取图像的特征信息,减少网络的参数量,采用对比度感知通道注意力机制获取图像的对比度信息,并将其作为全局信息,同时对提取特征的不同通道权重进行重新分配,增强重建图像的细节纹理信息。在此基础上,采用亚像素卷积对图像特征进行上采样操作,提高整体重建图像质量。实验结果表明,当放大倍数为2、3和4时,该网络的参数量分别为140 000、147 000和152 000,重建时间为0.020 s、0.014 s和0.011 s,相比VDSR、RFDN、IDN等网络,在保证重建效果的前提下能够有效减少网络参数量。  相似文献   

17.
现有单图像超分辨率模型普遍基于卷积神经网络且使用单一尺度的卷积核提取特征信息,容易造成细节信息遗漏并降低网络表征能力。为有效提取高频信息同时提高图像重建性能,提出一种基于整体注意力机制与分形稠密特征增强的图像超分辨率重建模型。在特征增强过程中,级联9个分形稠密特征增强模块,每个模块通过4条分支路径提取和融合多尺度特征,并引入局部稠密跳跃连接传递信息以获取更丰富的细节信息。引入整体注意力机制,从3个维度出发建立特征图之间的关联关系,通过对不同通道、空间和层次的特征进行加权和选择性聚合为特征图分配不同的权重,从而提高模型判别学习能力。在Set5、Set14、BSDS100和Urban100数据集上的实验结果表明,该模型可有效重建纹理细节更丰富的高分辨率图像,重建图像在主观视觉效果与客观评价指标上均优于同类模型,且在图像放大3倍时,峰值信噪比和结构相似性指标最高比MSRN模型提升了0.57 dB和0.007。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号