共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决传统迭代最近点(iterativeclosestpoint,ICP)算法存在配准效率低等问题,提出一种改进的采样一致性点云配准算法。通过自适应体素网格滤波法对点云进行处理,可以根据点云量级自动修改体素立方体大小,剔除偏差较大的噪点,降低点云数据量级;在快速点特征直方图(fastpointfeatureshistogram,FPFH)中引入距离的二次函数,降低远距离邻域点的权值,提高近距离邻域点的权值。运用公开数据集Bunny点云数据进行实验的结果表明,该算法相对于传统点云配准算法的配准精度提升了54.65%,配准效率提升了39.39%。运用多组数据验证了该算法的有效性。 相似文献
2.
为了实现断层图像之间的合理过渡,需要对断层间轮廓进行插值。提出了一种序列断层轮廓间线性插值的方法。该方法不仅对一般问题效果良好,而且可以根据实际情况需要调节插值轮廓线的精度,提高运行效率,减少计算量。 相似文献
3.
为了快速有效地检测出聚类的边界点,提出一种将网格技术与联合熵相结合的边界点检测算法.该算法中网格技术用于快速查找数据集中聚类边界所在的网格范围,联合熵用于在边界落入的网格范围内准确识别聚类的边界点.实验结果表明.该算法能够在含有噪声点,孤立点的数据集上,有效地检测出聚类的边界,运行效率高. 相似文献
4.
5.
6.
7.
8.
传统的正态分布变换算法精度低,而精度较高的迭代最近点算法极易陷入局部最优解。为了解决以上问题,将采样一致性算法与NDT算法结合作为点云初始配准方法,再利用KD-tree加速的ICP精配准方法完成点云匹配。实验结果表明,本文所提出的方法大大提高了配准精度。 相似文献
9.
根据平面散乱点云的特点,依据边界点和非边界点的位置关系,用网格把点云划分开来,在确定边界网格和非边界网格以后,将所有的边界网格按照它们的位置关系连接成环,对于从每一个边界网格提取边界提出了一种最小凸边算法,并且从理论和实验上证明了这种最小凸边算法的可行性。 相似文献
10.
随着三维测量技术应用领域的逐渐拓宽,点云数据处理技术的需求日益迫切,而多视点点云配准,是其中的基础技术环节;在此针对传统ICP算法鲁棒性差、对迭代初值敏感、计算效率低等缺点,提出一种SIFT算法与阈值筛选相结合的点云配准算法;在参考点云和待配准点云中,通过计算SIFT关键点及各点主曲率,获得初始匹配点集;然后根据相似三角形阈值和法向量夹角阈值,进一步优化点对间的旋转平移关系;实验结果证明,相对于传统算法,改进算法能够以更短的时间来获得准确的配准效果,并且其自动化程度高以及能有效提高点云配准的效率和精度。 相似文献
11.
针对多平面结构的物体,传统的点特征点云配准方法存在鲁棒性差、易收敛到局部最优解等问题,提出了一种基于法向量投票的点云配准方法。用平面特征代替点特征作为配准基元,建立基于平面的坐标转换模型。首先构建kd-tree,计算各点的法向量,并将法向量转换到霍夫空间进行投票,提取平面特征;然后将单位四元数作为特征描述算子,以同名平面特征作为约束条件,根据最小二乘平差原则,求解点云之间的位姿变换关系。实验结果表明:相较于其他两种方法,提出方法对初始位置没有依赖性,在配准过程中可以有效避免局部最小陷阱,并且配准精度得到了提高。 相似文献
12.
13.
针对基于切片技术的点云数据重建算法需要提取切片内点云边界点,及现有算法效率低、提取效果不好等问题,提出一种多阈值提取平面点云边界点的算法。通过选取判断点的k个近邻点,计算相邻两点与判断点连线间夹角,由于边界点必存在最大夹角,通过判断最大夹角是否超过设定阈值,从而快速提取边界点。通过对阈值设值分析,不同点云数据的边界提取实验及几种方法间比较,该方法不受点云形状影响,均能较好提取边界点,且优于其他3种算法。结果表明该方法在保证原始点云特征信息的前提下,可较好提取边界点,提高后续点云重建速度与效率。 相似文献
14.
点云是一种3维表示方式,在广泛应用的同时产生了对点云处理的诸多挑战。其中,点云配准是一项非常值得研究的工作。点云配准旨在将多个点云正确配准到同一个坐标系下,形成更完整的点云。点云配准要应对点云非结构化、不均匀和噪声等干扰,要以更短的时间消耗达到更高的精度,时间消耗和精度往往是矛盾的,但在一定程度上优化是有可能的。点云配准广泛应用于3维重建、参数评估、定位和姿态估计等领域,在自动驾驶、机器人和增强现实等新兴应用上也有点云配准技术的参与。为此,研究者开发了多样巧妙的点云配准方法。本文梳理了一些比较有代表性的点云配准方法并进行分类总结,对比相关工作,尽量覆盖点云配准的各种形式,并对一些方法的细节加以分析介绍。将现有方法归纳为非学习方法和基于学习的方法进行分析。非学习方法分为经典方法和基于特征的方法;基于学习的方法分为结合了非学习方法的部分学习方法和直接的端到端学习方法。本文分别介绍了各类方法的典型算法,并对比总结算法特性,展望了点云配准技术的未来研究方向。 相似文献
15.
约束改进的ICP点云配准方法 总被引:1,自引:0,他引:1
提高配准速度和精度是点云配准研究的重点。提出一种距离约束改进的迭代邻近点算法,针对邻近点法中找到的配准点,采用最近原则排除含相同点的点对;使用配准点重心作为参考点,结合点对距离约束排除误配准点对后进行点云配准;与使用点云重心作为参考点的方法和迭代邻近点算法进行了比较。实验结果表明,在配准速度和精度方面,提出的算法都有了提高,实现了点云的快速、准确配准。 相似文献
16.
17.
提出了一种基于二次误差的特征描述子,该特征描述子具有旋转不变性。通过提取点的二次误差和邻域点二次误差得到两种特征描述子。基于高斯混合模型的点云配准算法层出不穷,主要原因是概率模型在噪声和离群值方面具有更好的鲁棒性,然而该类方法对于尺度较大的旋转表现并不好,为此将二次误差特征描述子作为高斯混合模型的局部特征优化了高斯混合模型较大旋转中的配准效果,并提出基于双特征的配准策略优化了单一特征的缺陷。通过实验与鲁棒的ICP(iterative closest point)以及流行的基于特征的配准算法在配准效率和配准精度方面进行对比,效率是鲁棒性ICP的3~4倍。在大尺度的旋转中提出的算法具有良好的鲁棒性并且优于大多数流行的算法。 相似文献
18.
针对传统点云配准三维正态分布变换(3D-NDT)、迭代最近点(ICP)算法在未给定初
始配准估计的情况下配准效果不佳、配准时间长、误差较大的缺陷,提出了精准且相对高效的
点云匹配算法。首先,运用3D-Harris 算法识别每一幅点云的关键点,并以此为基本点建立局
部参考框架,计算快速点特征直方图(FPFH)描述子;之后,使用最小中值法(LMeds)中的对应
估计算法排除不准确的点对应关系,得到含有对应三维特征关系的特征点对。计算粗配准所需
的变换矩阵,完成初步匹配。随后,根据3D-NDT 算法将点云数据空间体素化,运用概率分布
函数完成最终的点云进行精确地匹配。使用改进配准将3 组分别从网络下载的较少噪声、大规
模与Kinect V2.0 采集的较多噪声、大规模的2 组重叠度不同的点云数据匹配到同一个空间参考
框架中,并通过精度分析对比经典3D-NDT,ICP 等算法。实验结果证明,该算法在迭代次数
较低时,可使室内场景点云数据完成精度较高的配准且受噪声影响较小,但如何将算法的复杂
度适当降低,缩短配准时间需要更进一步的研究。 相似文献
19.
基于多判别参数混合方法的散乱点云特征提取 总被引:1,自引:0,他引:1
针对以往散乱点云特征提取算法存在尖锐特征点提取不完整以及无法保留模型边界点的问题,提出了一种多个判别参数混合方法的特征提取算法。首先,对点云构建k-d tree,利用k-d tree建立点云k邻域;然后,针对每个k邻域计算数据点曲率、点法向与邻域点法向夹角的平均值、点到邻域重心的距离、点到邻域点的平均距离;最后,据此四个参数定义特征阈值和特征判别参数,特征判别参数大于阈值的点即为特征点。实验结果表明,与已有算法相比,该算法不仅可以有效提取尖锐特征点,而且能够识别边界点。 相似文献