首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
细粒度图像分类(FGVC)具有类间差异小、类内差异大等特点,提升该任务效果的关键在于识别目标的判别性部位。目前基于注意力机制的方法一般会识别一个或者两个判别性部位,效果不佳。为此,提出一种注意力互斥正则机制的细粒度模型(AMEM),通过限制注意力图的不同通道关注不同目标部位,引导模型关注目标的多个判别性部位。在CUB-200-2011、FGVC-Aircraft、Stanford Cars和Stanford Dogs等4个公开数据集上进行评测,实验表明AMEM取得了90.5%、94.3%、95.5%和93.2%的准确率,效果优于对比实验中的其他细粒度模型;此外热力图显示可以识别出指定数目的判别性部位。AMEM在提升预测性能的同时,也能提供一定程度的预测可解释性。  相似文献   

2.
如何对识别物体进行精确定位并提取更具有表达力的特征,是细粒度图像分类算法的核心问题之一.为此,本文提出了一种基于注意力机制的双线性卷积神经网络细粒度图像分类算法(BAM B-CNN),主要工作如下:1)通过VGG-16网络获得原始图像的激活映射图,选取大于平均值的最大联通区域作为物体图像;2)使用区域建议网络(RPN)...  相似文献   

3.
细粒度图像具有类内方差大、类间方差小的特点,致使细粒度图像分类(FGIC)的难度远高于传统的图像分类任务。介绍了FGIC的应用场景、任务难点、算法发展历程和相关的常用数据集,主要概述相关算法:基于局部检测的分类方法通常采用连接、求和及池化等操作,模型训练较为复杂,在实际应用中存在较多局限;基于线性特征的分类方法模仿人类视觉的两个神经通路分别进行识别和定位,分类效果相对较优;基于注意力机制的分类方法模拟人类观察外界事物的机制,先扫描全景,后锁定重点关注区域并形成注意力焦点,分类效果有进一步的提高。最后针对目前研究的不足,展望FGIC下一步的研究方向。  相似文献   

4.
视觉注意力机制在细粒度图像分类中得到了广泛的应用。现有方法多是构建一个注意力权重图对特征进行简单加权处理。对此,本文提出了一种基于可端对端训练的深度神经网络模型实现的多通道视觉注意力机制,首先通过多视觉注意力图描述对应于视觉物体的不同区域,然后提取对应高阶统计特性得到相应的视觉表示。在多个标准的细粒度图像分类测试任务中,基于多通道视觉注意的视觉表示方法均优于近年主流方法。  相似文献   

5.
目的 由于分类对象具有细微类间差异和较大类内变化的特点,细粒度分类一直是一个具有挑战性的任务。绝大多数方法利用注意力机制学习目标中显著的局部特征。然而,传统的注意力机制往往只关注了目标最显著的局部特征,同时抑制其他区域的次级显著信息,但是这些抑制的信息中通常也含有目标的有效特征。为了充分提取目标中的有效显著特征,本文提出了一种简单而有效的互补注意力机制。方法 基于SE(squeeze-and-excitation)注意力机制,提出了一种新的注意力机制,称为互补注意力机制(complemented SE,CSE)。既从原始特征中提取主要的显著局部特征,也从抑制的剩余通道信息中提取次级显著特征,这些特征之间具有互补性,通过融合这些特征可以得到更加高效的特征表示。结果 在CUB-Birds(Caltech-UCSD Birds-200-2011)、Stanford Dogs、Stanford Cars和FGVC-Aircraft(fine-grained visual classification of aircraft)4个细粒度数据集上对所提方法进行验证,以ResNet50为主干网络,在测试集上的分类精度分别达到了87.9%、89.1%、93.9%和92.4%。实验结果表明,所提方法在CUB-Birds和Stanford Dogs两个数据集上超越了当前表现最好的方法,在Stanford Cars和FGVC-Aircraft数据集的表现也接近当前主流方法。结论 本文方法着重提升注意力机制提取特征的能力,得到高效的目标特征表示,可用于细粒度图像分类和特征提取相关的计算机视觉任务。  相似文献   

6.
在细粒度图像分类任务中,巨大的类内方差决定了该任务的分类依赖于粗粒度和细粒度信息.最近的工作主要关注于如何定位不同粒度的辨别性局部来解决这个问题.然而,在如何选择具有辨别性的粒度以及融合多粒度特征方面,现有的工作还缺乏一定研究.因此,本文提出了一个融合多粒度特征的细粒度图像分类网络,首先通过一个局部错位模块选择细粒度图像中的不同粒度,然后引入注意力机制定位它们并提取其多粒度特征,并且通过迭代学习的方式提取多粒度间的互补信息,最后采用可变形卷积融合这些多粒度特征,从而实现细粒度图像分类.本文所提出的方法在CUB-200-2011、FGVC-Aircraft和Stanford Cars三个数据集上准确率分别达到88.6%、93.6%和94.8%,这表明本文的方法能够获得优秀的分类性能.  相似文献   

7.
针对细粒度图像分类任务中难以对图中具有鉴别性对象进行有效学习的问题,本文提出了一种基于注意力机制的弱监督细粒度图像分类算法.该算法能有效定位和识别细粒度图像中语义敏感特征.首先在经典卷积神经网络的基础上通过线性融合特征得到对象整体信息的表达,然后通过视觉注意力机制进一步提取特征中具有鉴别性的细节部分,获得更完善的细粒度特征表达.所提算法实现了线性融合和注意力机制的结合,可看作是多网络分支合作训练共同优化的网络模型,从而让网络模型对整体信息和局部信息都有更好的表达能力.在3个公开可用的细粒度识别数据集上进行了验证,实验结果表明,所提方法有效性均优于基线方法,且达到了目前先进的分类水平.  相似文献   

8.
为解决细粒度图像分类任务存在类内差异性和类间相似性大的问题,提出一种基于Vision Transformer(ViT)的细粒度图像分类方法。采取ViT作为特征编码网络,获取图像的全局特征表示;设计多级区域选择模块,捕捉细微的具有可判别性的层级化信息;利用一个简单且有效的中心损失函数,缩短深层特征与相应类中心在特征空间中的距离。在图像级标签的监督下,实现端到端的训练。结果在CUB-200-2011、NABirds以及Stanford Cars数据集上分别达到90.1%、90.2%和93.7%的分类准确率,超越当前最优算法。  相似文献   

9.
细粒度图像分类任务由于自身存在的细微的类间差别和巨大的类内差别使其极具挑战性,为了更好地学习细粒度图像的潜在特征,该算法将知识蒸馏引入到细粒度图像分类任务中,提出基于知识蒸馏与目标区域选取的细粒度图像分类方法(TRS-DeiT),能使其兼具CNN模型和Transformer模型的各自优点。此外,TRS-DeiT的新型目标区域选取模块能够获取最具区分性的区域;为了区分任务中的易混淆类,引入对抗损失函数计算不同类别图像间的相似度。最终,在三个经典细粒度数据集CUB-200-2011、Stanford Cars和Stanford Dogs上进行训练测试,分别达到90.8%、95.0%、95.1%的准确率。实验结果表明,该算法相较于传统模型具有更高的准确性,通过可视化结果进一步证实该算法的注意力主要集中在识别对象,从而使其更擅长处理细粒度图像分类任务。  相似文献   

10.
细粒度图像分类的主要挑战在于类间的高度相似性和类内的差异性. 现有的研究多数基于深层的特征而忽略了浅层细节信息, 然而深层的语义特征由于多次卷积和池化操作往往会丢失大量的细节信息. 为了更好地整合浅层和深层的信息, 提出了基于跨层协同注意和通道分组注意的细粒度图像分类方法. 首先, 通过ResNet50加载预训练模型作为骨干网络提取特征, 由最后3个阶段提取的特征以3个分支的形式输出, 每一个分支的特征通过跨层的方式与其余两个分支的特征计算协同注意并交互融合, 其中最后一个阶段的特征经过通道分组注意模块以增强语义特征的学习能力. 模型训练可以高效地以端到端的方式在没有边界框和注释的情况下进行训练, 实验结果表明, 该算法在3个常用细粒度图像数据集CUB-200-2011、Stanford Cars和FGVC-Aircraft上的准确率分别达到了89.5%、94.8%和94.7%.  相似文献   

11.
基于深度模型迁移的细粒度图像分类方法   总被引:1,自引:0,他引:1  
刘尚旺  郜翔 《计算机应用》2018,38(8):2198-2204
针对细粒度图像分类方法中存在模型复杂度较高、难以利用较深模型等问题,提出深度模型迁移(DMT)分类方法。首先,在粗粒度图像数据集上进行深度模型预训练;然后,使用细粒度图像数据集对预训练模型logits层进行不确切监督学习,使其特征分布向新数据集特征分布方向迁移;最后,将迁移模型导出,在对应的测试集上进行测试。实验结果表明,在STANFORD DOGS、CUB-200-2011、OXFORD FLOWER-102细粒度图像数据集上,DMT分类方法的分类准确率分别达到72.23%、73.33%和96.27%,验证了深度模型迁移方法在细粒度图像分类领域的有效性。  相似文献   

12.
针对脑部磁共振图像中脑卒中病灶的自动分割因分割目标边缘复杂、尺度变化多样而造成的识别精度不高的问题,提出一种基于多尺度注意力的多尺度特征聚合方法,该方法利用注意力机制调节中间特征不同通道的权重,并自适应地选择不同尺度的特征进行融合,在缺血性脑卒中的公开数据集ATLAS上进行的一系列实验,选取Dice系数、豪斯多夫距离、重叠度、准确率和召回率作为评价指标,结果表明所提出的模型在脑卒中病变的分割问题上取得了较好的分割效果;另外,本模型还在Kaggle公开的脑肿瘤数据集上完成对比实验,证明本模型具有良好的可泛化性。  相似文献   

13.
目的 针对细粒度图像分类中的背景干扰问题,提出一种利用自上而下注意图分割的分类模型。方法 首先,利用卷积神经网络对细粒度图像库进行初分类,得到基本网络模型。再对网络模型进行可视化分析,发现仅有部分图像区域对目标类别有贡献,利用学习好的基本网络计算图像像素对相关类别的空间支持度,生成自上而下注意图,检测图像中的关键区域。再用注意图初始化GraphCut算法,分割出关键的目标区域,从而提高图像的判别性。最后,对分割图像提取CNN特征实现细粒度分类。结果 该模型仅使用图像的类别标注信息,在公开的细粒度图像库Cars196和Aircrafts100上进行实验验证,最后得到的平均分类正确率分别为86.74%和84.70%。这一结果表明,在GoogLeNet模型基础上引入注意信息能够进一步提高细粒度图像分类的正确率。结论 基于自上而下注意图的语义分割策略,提高了细粒度图像的分类性能。由于不需要目标窗口和部位的标注信息,所以该模型具有通用性和鲁棒性,适用于显著性目标检测、前景分割和细粒度图像分类应用。  相似文献   

14.
目的 去模糊任务通常难以进行对图像纹理细节的学习,所复原图像的细节信息不丰富,图像边缘不够清晰,并且需要耗费大量时间。本文通过对图像去模糊方法进行分析,同时结合深度学习和对抗学习的方法,提出一种新型的基于生成对抗网络(generative adversarial network, GAN)的模糊图像多尺度复原方法。方法 使用多尺度级联网络结构,采用由粗到细的策略对模糊图像进行复原,增强去模糊图像的纹理细节;同时采用改进的残差卷积结构,在不增加计算量的同时,加入并行空洞卷积模块,增加了感受野,获得更大范围的特征信息;并且加入通道注意力模块,通过对通道之间的相关性进行建模,加强有效特征权重,并抑制无效特征;在损失函数方面,结合感知损失(perceptual loss)以及最小均方差(mean squared error, MSE)损失,保证生成图像和清晰图像内容一致性。结果 通过全参考图像质量评价指标峰值信噪比(peak signal to noise ratio, PSNR)、结构相似性(structural similarity,SSIM)以及复原时间来评价算法优劣。与其他方法的对比结...  相似文献   

15.
细粒度图像分类是计算机视觉领域一个具有挑战性的任务,在实际场景中具有很高的应用价值。其中不同子类别的物体整体轮廓差异较小,微小的判别性局部区域是分类的关键。然而,这些重要的局部区域的尺度可能不同, 不能用单一的标准去衡量它们。为了解决这个问题,本文提出了多粒度空间混乱模块来帮助神经网络学习如何寻找到不同尺度的判别性细节。该模块首先将图片划分为不同粒度的局部区域,然后随机打乱并重组构成新的输入图片。经过处理的图片具有区域无关性,从而迫使网络更好地在不同粒度层次下寻找有判别力的局部区域并从中学习特征。在3个广泛使用的细粒度图像分类数据集上的实验证明本文提出的模块可以有效地帮助网络寻找判别性局部区域从而提升了准确率并且网络不需要图片的任何部位标注信息。  相似文献   

16.
针对卷积神经网络(CNN)平等地对待输入图像中潜在的对象信息和背景信息,而遥感图像场景又存在许多小对象和背景复杂的问题,提出一种基于注意力机制和多尺度特征变换的尺度注意力网络模型。首先,开发一个快速有效的注意力模块,基于最优特征选择生成注意力图;然后,在ResNet50网络结构的基础上嵌入注意力图,增加多尺度特征融合层,并重新设计全连接层,构成尺度注意力网络;其次,利用预训练模型初始化尺度注意力网络,并使用训练集对模型进行微调;最后,利用微调后的尺度注意力网络对测试集进行分类预测。该方法在实验数据集AID上的分类准确率达到95.72%,与ArcNet方法相比分类准确率提高了2.62个百分点;在实验数据集NWPU-RESISC上分类准确率达到92.25%,与IORN方法相比分类准确率提高了0.95个百分点。实验结果表明,所提方法能够有效提高遥感图像场景分类准确率。  相似文献   

17.
目的 肝脏肿瘤是人体最具侵袭性的恶性肿瘤之一,传统的肿瘤诊断依靠观察患者的CT(computed tomography)图像,工作量大时易造成疲劳,难免会产生误诊,为此使用计算机辅助的方法进行诊断,但现有的深度学习方法中存在肿瘤分类准确率低、网络的特征表达能力和特征提取能力较弱等问题。对此,本文设计了一种多尺度深度特征提取的分类网络模型。方法 首先在原始CT图像中选取感兴趣区域,然后根据CT图像的头文件进行像素值转换,并进行数据增强来扩充构建数据集,最后将处理后的数据输入到本文提出的分类网络模型中输出分类结果。该网络通过多尺度特征提取模块来提取图像的多尺度特征并增加网络的感受野,使用深度特征提取模块降低背景噪声信息,并着重关注病灶区域有效特征,通过集成并行的空洞卷积使得尺度多元化,并将普通卷积用八度卷积替换来减少参数量,提升分类性能,最终实现了对肝脏肿瘤的精确分类。结果 本文模型达到了87.74%的最高准确率,比原始模型提升了9.92%;与现有主流分类网络进行比较,多项评价指标占优,达到了86.04%的召回率,87%的精准率,86.42%的F1分数;此外,通过消融实验进一步验证了所提方法的有效性。结论 本文方法可以较为准确地对肝脏肿瘤进行分类,将此方法结合到专业的医疗软件当中去,能够为医生早期的诊断和治疗提供可靠依据。  相似文献   

18.
邹承明  罗莹  徐晓龙 《计算机应用》2018,38(7):1853-1856
针对单一特征表示的局限性会导致细粒度图像分类准确度不高的问题,提出了一种基于卷积神经网络(CNN)和尺度不变特征转换(SIFT)的多特征组合表示方法,综合考虑对目标整体、关键部位和关键点的特征提取。首先,分别以细粒度图像库中的目标整体和头部区域训练CNN得到两个网络模型,用来提取目标的整体和头部CNN特征;然后,对图像库中所有目标区域提取SIFT关键点并通过K均值(K-means)聚类生成码本,再将每个目标区域的SIFT描述子通过局部特征聚合描述符(VLAD)参照码本编码为特征向量;最后,组合多种特征作为最终的特征表示,采用支持向量机(SVM)对细粒度图像进行分类。使用该方法在CUB-200-2011数据库上进行实验,并与单一的特征表示方法进行了比较。实验结果表明,该方法与基于单一CNN特征的细粒度图像分类相比提升了13.31%的准确度,证明了多特征组合对细粒度图像分类的积极作用。  相似文献   

19.
车辆精细型号是车辆识别的主要线索之一,也是智能交通系统的重要组成部分。针对车辆精细型号种类繁多、车辆所处环境复杂多变等因素,提出一种基于多尺度特征融合的车辆精细型号识别方法。该方法基于传统的卷积神经网络,通过提取并融合来自网络底层和高层的车辆特征,完成对车辆精细型号的识别。与其他基于卷积神经网络的车辆精细型号识别方法相比,该方法在提高分类准确率的同时还大幅度降低了整体网络的参数规模。实验结果表明,在公开数据集CompCars的监控场景下其识别精度达到了98.43%,且模型参数大小仅为3.93 MB,平均每张图片只需0.83 ms的分类时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号