共查询到19条相似文献,搜索用时 88 毫秒
1.
针对隧道裂缝人工识别低效、检修不便以及隧道环境复杂多变、检测易受噪声干扰等问题,文中提出一种基于深度学习的裂缝检测算法。通过神经网络对原始图像进行非裂缝区域过滤,减少无关背景信息的干扰,同时在分割算法基础上通过多维分类器将误识别的裂缝区域剔除。实验结果表明,密集连接卷积网络(DenseNet)在裂缝分类中最高可达99.95%的准确率,有效提升了隧道裂缝自动检测精度。 相似文献
2.
深度信息的获取是场景解析中是非常重要的环节,主要分为传感器获取与图像处理两种方法。传感器技术对环境要求很高,因此图像处理为更通用的方法。传统的方法通过双目立体标定,利用几何关系得到深度,但仍因为环境因素限制诸多。因此,作为最贴近实际情况的方法,单目图像深度估计具有极大研究价值。为此,针对单目图像深度估计,提出了一种基于DenseNet的单目图像深度估计方法,该方法利用多尺度卷积神经网络分别采集全局特征、局部特征;加入了DenseNet结构,利用DenseNet强特征传递、特征重用等特点,优化特征采集过程。通过NYU Depth V2数据集上验证了模型的有效性,实验结果表明,该方法的预测结果平均相对误差为0.119,均方根误差为0.547,对数空间平均误差为0.052。 相似文献
3.
4.
杨其睿 《计算机应用与软件》2019,36(2)
现有油田火灾预警系统较多地采用烟感、红外等被动传感器进行烟火检测,其检测范围小,抗干扰能力弱,无法实时准确地进行火灾预警。如何从油田安防设备获取的海量图像数据中检测到烟火信息,提高抢险救灾的预测响应时间,在国内外都是一个具有挑战性的研究课题。提出一种改进的DenseNet深度神经网络架构,解决复杂图像中火灾区域的检测。为了增强特征传播的精度,降低存储数据量,采取结构化稀疏操作。将网络卷积核分为多个组,在训练过程中逐渐减小每个组内不重要的参数连接。针对油田安防领域构建的数据集存在不平衡性,增强火灾检测系统最终分类预测的准确性,引入Focal损失函数对分类层进行火灾识别。大量的定性定量实验表明,该改进网络在检测率与误检率方面均优于现有的其他深度模型。 相似文献
5.
乳腺X线摄影技术是目前乳腺癌早期发现和诊断的重要手段。然而乳腺X线图像中肿块边缘模糊,分类相对困难,因此提升乳腺肿块的诊断精度从而及早预防和治疗仍是医学领域的一大挑战。针对乳腺肿块的特点,提出了一种结合密集卷积神经网络(DenseNet)和压缩激励(SE)模块的新网络(DSAMNet),该网络融合了二者优势,既加强特征重用,又实现特征提取过程中的特征重标定。根据SE模块嵌入DenseNet的不同位置,提出了模型SE-DenseNet-A、SE-DenseNet-B和SE-DenseNet-C。对SE-DenseNet的池化函数进行改进,提出了模型DSAMNet-A、DSAMNet-B和DSAMNet-C。综合不同结构和不同深度的网络模型在公开数据集CBIS-DDSM上进行训练和测试。实验结果表明,DSAMNet-B有更加优异的性能,其准确率比DenseNet模型的准确率提高了10.8%,AUC达到了0.929。 相似文献
6.
针对图像中由于人数不确定对处理速度的影响,以及不同人体或人体自身部位的相对大小不同等尺度因素影响导致通用的关键点检测方法的检测效果不佳等问题,提出一种改进的稠密卷积网络(DenseNet)结构用于人体姿态估计.该网络结构为单阶段的端对端的网络结构,利用深度卷积神经网络进行特征提取,在卷积网络末端通过特定的尺度转换结构得... 相似文献
7.
目前,在医学图像领域存在乳腺癌组织病理图像自动分类难以应用于临床诊断的现象,究其根源是当前没有大型公开的数据集或数据集数据不均衡。针对上述问题,提出一种结合密集卷积神经网络(dense convolutional network,DenseNet)、注意力机制(attention mecheanism)和焦点损失函数(Focal loss)的乳腺癌组织病理图像的多分类模型,即DAFLNet。DAFLNet在乳腺癌组织病理图像数据集BreaKHis上进行训练、验证与测试,最终实验结果显示,该模型对良恶性二分类的识别准确率达到99.1%,对乳腺亚型八分类的识别准确率达到95.5%。证明在数据不均衡的条件下,DAFLNet模型能够准确地对乳腺组织病理图像进行八分类。 相似文献
8.
9.
利用遥感技术对露天开采区进行信息提取和监测已成为解决矿山自然环境问题的重要手段。通过改进带密集连接的全卷积神经网络,构建露天开采区样本库,并训练了针对多源遥感数据的露天开采区提取模型,最终实现对铜陵地区露天开采区的全自动提取。与传统分类方法和深度学习方法相比,该方法在基于像元和基于对象的评价方面具有较好的精度,其中像元精度PA:0.977,交并比IoU:0.721,综合评价指标F1:0.838,Kappa系数:0.825,召回率:0.913,漏警率:0.087,虚警率:0.533。同时,该模型对于匀色较差的GoogleEarth影像也有较好的提取效果,表现出较强的泛化性和适用性,在多源遥感影像露天开采区提取方面具有较强的应用价值。 相似文献
10.
合成孔径雷达(SAR)图像上的各种噪声削弱了目标、阴影等感兴趣区域(region of interest,ROI)的细节特征,影响了后续的目标检测、分类和识别等应用。传统的正则化方法能够增强SAR图像的目标特征,但是运算量过大,实时性不好。提出一种改进的正则化方法,有效地提高了SAR图像区域特征提取的速度和精度。理论上证明,降质算子的优化可以使运算量由O(M3N3)降到O(MN),同时保留了区域特征增强的能力。利用MSTAR数据库中实测的SAR图像进行算法验证,实验结果表明该方法能够大幅度提高目标杂波比,有效抑制感兴趣区域内的噪声,从而更精确地把目标和阴影等区域从背景杂波中提取出来。 相似文献
11.
目的 针对密集连接卷积神经网络(DenseNet)没有充分考虑通道特征相关性以及层间特征相关性的缺点,本文结合软注意力机制提出了端到端双通道特征重标定密集连接卷积神经网络。方法 提出的网络同时实现了DenseNet网络的通道特征重标定与层间特征重标定。给出了DenseNet网络通道特征重标定与层间特征重标定方法;构建了端到端双通道特征重标定密集连接卷积神经网络,该网络每个卷积层的输出特征图经过两个通道分别完成通道特征重标定以及层间特征重标定,再进行两种重标定后特征图的融合。结果 为了验证本文方法在不同图像分类数据集上的有效性和适应性,在图像分类数据集CIFAR-10/100以及人脸年龄数据集MORPH、Adience上进行了实验,提高了图像分类准确率,并分析了模型的参数量、训练及测试时长,验证了本文方法的实用性。与DenseNet网络相比,40层及64层双通道特征重标定密集连接卷积神经网络DFR-DenseNet(dual feature reweight DenseNet),在CIFAR-10数据集上,参数量仅分别增加1.87%、1.23%,错误率分别降低了12%、9.11%,在CIFAR-100数据集上,错误率分别降低了5.56%、5.41%;与121层DFR-DenseNet网络相比,在MORPH数据集上,平均绝对误差(MAE)值降低了7.33%,在Adience数据集上,年龄组估计准确率提高了2%;与多级特征重标定密集连接卷积神经网络MFR-DenseNet(multiple feature reweight DenseNet)相比,DFR-DenseNet网络参数量减少了一半,测试耗时约缩短为MFR-DenseNet的61%。结论 实验结果表明本文端到端双通道特征重标定密集连接卷积神经网络能够增强网络的学习能力,提高图像分类的准确率,并对不同图像分类数据集具有一定的适应性、实用性。 相似文献
12.
局部特征信息在图像分割中扮演着重要角色,然而基于文本的实例分割任务具有对输入文本表达式的依赖性,无法直接从原始的输入图像中提取局部特征信息。针对这一问题,提出了一种具体的名词引导局部特征提取的深度神经网络模型(NgLFNet),NgLFNet模型可根据输入文本表达式中的关键名词来自动挖掘待分割对象的局部特征信息。具体地,该模型首先通过语句分析得到关键名词;其次通过文本和图像编码器提取相应特征,并利用关键名词通过多头注意力机制获取高关注区域局部特征;然后逐步融合多模态特征;最后在解码修正模块利用得到的局部特征对预测掩膜进行更细致的修正,从而得到最终结果。将该方法与多种主流基于文本的实例分割方法进行对比,实验结果表明该方法提升了分割效果。 相似文献
13.
针对中华传统刺绣工艺传承保护问题中的分类任务,传统的刺绣分类方法存在耗时长、精度低以及需要大量掌握专业知识的人力资源等问题;设计了一种基于改进DenseNet的刺绣图像分类识别方法;构建刺绣图像分类识别数据集;采用局部二值模式LBP、Canny算子边缘提取以及Gabor滤波等方式提取纹理特征,将不同特征图与原图合并为四至六通道图像数据集送入网络进行消融试验,扩充了数据集宽度;为稳定训练过程,加速损失收敛速度,提出引入SPP (spatial pyramid pooling)结构优化模型;为提高分类识别精度使用Leaky ReLU激活函数优化ReLU函数;实验结果表明基于改进DenseNet的刺绣图像分类识别方法可解决传统刺绣图像分类方法中存在的问题,改进后的刺绣图像分类模型与基准模型相比准确率提高了8.1%,高达97.39%。 相似文献
14.
水对光的吸收和散射效应降低了水下图像的质量,水下图像的可视范围受到限制,复杂水下场景下的鲁棒性和精确性问题使得特征提取与匹配成为一项具有挑战性的任务。为了更好地配准水下图像,提出了一种改进CNN-RANSAC的水下图像特征配准方法,首先通过基于深度卷积神经网络的水下图像增强方法对水下图像进行增强预处理,通过水下图像分类数据集迁移学习训练VGGNet-16网络框架,利用修改后的网络框架进行特征提取,生成鲁棒的多尺度特征描述符与特征点,经过特征粗匹配与动态内点选择,使用改进的RANSAC方法剔除误匹配点。在大量水下图像数据集上进行了充分的特征提取和特征匹配实验,与基于SIFT和SURF的配准方法相比,该方法能够检测到更多的特征点,实现了匹配正确率的大幅度提高。 相似文献
15.
天气状况对室外视频设备的成像效果有很大影响。为实现成像设备在恶劣天气下的自适应调整,从而提升智能监控系统的效果,同时针对传统的天气图像判别方法分类效果差且对相近天气现象不易分类的不足,以及深度学习方法识别天气准确率不高的问题,提出了一个将传统方法与深度学习方法相结合的特征融合模型。融合模型采用4种人工设计算法提取传统特征,采用AlexNet提取深层特征,利用融合后的特征向量进行图像天气状况的判别。融合模型在多背景数据集上的准确率达到93.90%,优于对比的3种常用方法,并且在平均精准率(AP)和平均召回率(AR)指标上也表现良好;在单背景数据集上的准确率达到96.97%,AP和AR均优于其他模型,且能很好识别特征相近的天气图像。实验结果表明提出的特征融合模型可以结合传统方法和深度学习方法的优势,提升现有天气图像分类方法的准确度,同时提高在特征相近的天气现象下的识别率。 相似文献
16.
传统Beamlet无结构算法在提取图像线特征时不仅存在重叠模糊的缺陷,而且在提取复杂图像线特征时不能有效地检测出目标信息,细节特征更是难以刻画。针对这些问题,提出将改进的Beamlet无结构算法与Canny算子相结合的方法提取复杂图像的线特征。首先,对图像进行Beamlet变换,通过改进Beamlet无结构算法,采用新的能量统计和制定新的划线规则,以保证每个二进方块最多有一条最优基;然后,对图像用Canny算子检测边缘,通过选取较大的Sigma,只检测明显的大边缘;最后,两者结合得到图像的线特征。从检测的线特征的线型连接程度等方面对该算法的性能进行了评价,并与现有的方法进行了比较,实验结果表明,该方法克服了两种方法单独提取线特征时存在的断裂、重叠、模糊和虚假边缘的缺点,有效地提高了复杂图像线特征提取的准确性和连续性。 相似文献
17.
目的 肝脏肿瘤是人体最具侵袭性的恶性肿瘤之一,传统的肿瘤诊断依靠观察患者的CT(computed tomography)图像,工作量大时易造成疲劳,难免会产生误诊,为此使用计算机辅助的方法进行诊断,但现有的深度学习方法中存在肿瘤分类准确率低、网络的特征表达能力和特征提取能力较弱等问题。对此,本文设计了一种多尺度深度特征提取的分类网络模型。方法 首先在原始CT图像中选取感兴趣区域,然后根据CT图像的头文件进行像素值转换,并进行数据增强来扩充构建数据集,最后将处理后的数据输入到本文提出的分类网络模型中输出分类结果。该网络通过多尺度特征提取模块来提取图像的多尺度特征并增加网络的感受野,使用深度特征提取模块降低背景噪声信息,并着重关注病灶区域有效特征,通过集成并行的空洞卷积使得尺度多元化,并将普通卷积用八度卷积替换来减少参数量,提升分类性能,最终实现了对肝脏肿瘤的精确分类。结果 本文模型达到了87.74%的最高准确率,比原始模型提升了9.92%;与现有主流分类网络进行比较,多项评价指标占优,达到了86.04%的召回率,87%的精准率,86.42%的F1分数;此外,通过消融实验进一步验证了所提方法的有效性。结论 本文方法可以较为准确地对肝脏肿瘤进行分类,将此方法结合到专业的医疗软件当中去,能够为医生早期的诊断和治疗提供可靠依据。 相似文献
18.
针对用于位姿估计的RGB-D特征提取网络规模过于庞大的问题,提出一种轻量化改进XYZNet的RGB-D特征提取网络。首先设计一种轻量级子网络BaseNet以替换XYZNet中的ResNet18,使得网络规模显著下降的同时获得更强大的性能;然后基于深度可分离卷积设计一种多尺度卷积注意力子模块Rep-MSCA(reparameterized multi-scale convolutional attention),加强BaseNet提取不同尺度上下文信息的能力,并约束模型的参数量;最后,为了以较小的参数代价提升XYZNet中PointNet的几何特征提取能力,设计一种残差多层感知器模块Rep-ResP(re-parameterized residual multi-layer perceptron)。改进后的网络浮点计算量与参数量分别降低了60.8%和64.8%,推理速度加快了21.2%,在主流数据集LineMOD与YCB-Video上分别取得了0.5%与0.6%的精度提升。改进后的网络更适宜在硬件资源紧张的场景下部署。 相似文献
19.
当前主流特征提取方法主要从全局特征或局部特征出发实现降维。为了能充分反映样本的全局特征和局部特征,提出基于图的人脸特征提取方法。该方法首先通过对训练样本进行学习得到最佳投影方向,该方向保证投影后的样本类内紧密而类间松散;然后将测试样本映射到最佳投影方向上并利用最近邻分类器进行样本类属判定。标准人脸库上的比较实验结果证明了所提方法的有效性。 相似文献