首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
铜冶炼渣中铁含量达30%~40%,但铁元素主要以铁橄榄石的形式存在,采用传统方法难以回收利用。以可再生生物炭为还原剂,通过深度还原—磁选回收铜冶炼渣中的铁,考察了还原条件对铜冶炼渣深度还原的影响。当还原温度为1 200 ℃、还原时间为75 min、CaO用量10%、碳氧摩尔比为1.5时,深度还原产品的金属化率达到86.83%,经过磨矿磁选可获得铁品位为62.84%、回收率为81.92%的磁选精矿。铜冶炼渣中主要含铁矿物有Fe2SiO4、Fe3O4及少量的Fe2O3,其还原过程为Fe2SiO4→FeO→Fe、Fe2O3→Fe3O4→FeO→Fe,得到的金属铁逐渐聚集长大最终形成有利于磁选分离的金属铁颗粒。  相似文献   

2.
采用深度还原技术处理鲕状赤铁矿,还原产品中铁颗粒的粒度是影响分选指标的关键。通过扫描电子显微镜测试技术,对还原产品中铁颗粒的微观形貌进行分析,进而考察还原条件对铁颗粒长大特性的影响。结果表明,升高还原温度能够促进鲕状结构的破坏、增加还原物料的流动性,有利于铁颗粒的长大;随着还原时间的延长,铁颗粒的形成及长大过程可分为还原成核、深度还原和颗粒粗化三个阶段;增大C/O摩尔比使铁氧化物与还原剂的接触更加充分,促进金属铁的生成,并逐渐长大为铁颗粒。  相似文献   

3.
鲕状赤铁矿深度还原过程中铁粒生长特征研究   总被引:3,自引:1,他引:2  
针对国内某种难选鲕状赤铁矿的特点,进行了深度还原试验,对其深度还原过程中铁粒的生长特征进行了研究,探讨了还原温度、还原时间、二元碱度等不同试验因素对焙烧产物中铁粒的聚集、兼并和长大的影响。研究结果表明,提高还原温度和延长还原时间有利于铁颗粒的聚集和长大,过高的二元碱度不利于铁颗粒的兼并和生长。  相似文献   

4.
某鲕状赤铁矿深度还原过程研究   总被引:7,自引:0,他引:7  
研究了某鲕状赤铁矿深度还原过程中铁矿物随还原时间的变化特性,讨论了金属铁颗粒的生长过程。研究结果表明,该鲕状赤铁矿深度还原过程中铁的氧化物是按照Fe2O3→Fe3O4→FeO→Fe的顺序直接还原为金属铁的。随还原时间的延长,金属铁颗粒以小颗粒向大颗粒聚集的方式逐渐长大,最终以铁颗粒的形式存在于还原后的产物中。  相似文献   

5.
七宝山铁尾矿还原焙烧—弱磁选回收铁试验   总被引:1,自引:0,他引:1  
江西七宝山铁尾矿成分复杂,铁品位达38.74%,主要铁矿物为针铁矿。为了高效回收其中的铁,采用还原焙烧—弱磁选工艺进行了试验研究。结果表明:提高煤粉添加量、延长焙烧时间、提高焙烧温度均有利于提高还原焙烧产物中铁的金属化率和金属铁粉的指标;在煤粉添加量为15%,还原焙烧温度为1 250℃,还原焙烧时间为60min,焙烧产物磨至-325目占58.80%,弱磁选磁场强度为88 kA/m情况下,可获得铁品位为88.80%、铁回收率为92.28%的金属铁粉。还原焙烧产物的微观分析表明:在还原焙烧初期,焙烧产物中生成了大量微细粒铁颗粒,随着还原焙烧时间的延长,细小的铁颗粒不断兼并、集聚,60 min后铁颗粒不再明显集聚、长大;随着还原温度的提高,焙烧产物中的铁颗粒显著长大,在1 250℃情况下,铁颗粒长至100μm左右;长大的铁颗粒中包裹细小脉石颗粒是造成金属铁粉铁品位难以进一步大幅度提高的主要原因。  相似文献   

6.
对某铁尾矿用煤粉作还原剂进行了还原焙烧试验研究。通过对尾矿中铁的物相分析表明,褐铁矿是矿石中主要的有用矿物,其在矿石中含量为67.8%。主要研究了还原剂加入量、焙烧温度和焙烧时间对尾矿中铁的金属化率的影响。结果表明,以煤粉为还原剂通过还原焙烧可以获得金属铁,在煤粉添加量15%、还原焙烧温度1 200℃、还原焙烧时间60 min的条件下,铁的金属化率可以达到94%以上,经过一段磁选可以得到铁品位88.90%、铁回收率93.14%的铁精矿。96.22%的铅和95.19%的锌在焙烧过程中以烟尘的形式挥发,可以在烟尘中进一步综合回收。  相似文献   

7.
采用深度还原-磁选工艺处理湖北官店的高磷鲕状赤铁矿石, 考察了还原温度、还原时间和配碳系数对还原指标的影响, 以及温度对还原产物微观形貌的影响。结果表明:在还原温度1 200 ℃、还原时间60 min、配碳系数2.0的适宜工艺条件下可获得金属化率90.72%的还原产物, 磁选后还原铁粉品位达90.55%, 铁回收率达92.03%; 随着还原温度提高, 铁颗粒逐渐长大, 原矿的鲕状结构被破坏。  相似文献   

8.
袁帅  李艳军  韩跃新  刘杰 《金属矿山》2016,45(7):113-116
深度还原是处理细粒浸染赤铁矿石的高效技术,还原温度是影响深度还原效果的主要因素之一。用深度还原-弱磁选技术处理澳大利亚某赤铁矿石,在1 523 K条件下能获得金属化率为92.30%还原产物,弱磁选可获得铁品位为78.11%、铁回收率为97.75%的金属铁粉。XRD、SEM-EDS分析表明,还原温度从1 473 K上升至1 523 K,绝大部分化合态的铁被还原为金属铁,铁尖晶石(FeAl2O4)的衍射峰消失,铝红柱石(Al6Si2O13)的衍射峰出现,还原产物表面出现金属铁颗粒,且随还原温度的升高而增多、长大,纯度也有所提高。  相似文献   

9.
为探究脱磷剂种类及用量、焙烧温度对高磷鲕状赤铁矿还原产物的磨矿特性的影响,以阿尔及利亚高磷鲕状赤铁矿为对象,采用筛分分析、化学分析及扫描电镜等手段研究还原产物可磨度、磨矿后铁和磷 分布情况。结果表明:①还原产物磨矿产品颗粒粒度主要分布在+0.074 mm和-0.030 mm这2个粒级,-0.074+0.045 mm和-0.045+0.030 mm粒级含量较少。②随着脱磷剂用量的增加,还原产物的可磨度升高;不同种类的 脱磷剂对还原产物可磨度的影响程度由大到小依次为CaCO3+Na2CO3、CaCO3、CaCO3+CaF2、CaF2、Na2CO3。③不加脱磷剂时,+0.074 mm粒级磷主要存在于磷灰石以及部分铁中;加入CaCO3、混合脱磷剂时,磷的分布较 为集中,主要是以磷灰石的形式存在;加入Na2CO3时,磷的分布较为均匀,存在于脉石中与铁形成连生体;加入CaF2后,磷的分布较为均匀,存在于脉石以及铁中,但脱磷的效果较差。④随着焙烧温度的升 高,+0.074 mm粒级产率升高,其余粒级产率逐渐降低,还原产物的可磨度迅速降低;焙烧温度升高,+0.074 mm粒级铁品位和磷含量升高,铁和磷逐渐富集到粗粒级当中。  相似文献   

10.
为考察物料形式对深度还原效果的影响,以湖北官店鲕状赤铁矿为原料,考察了造块和散料两种物料形式对鲕状赤铁矿深度还原效果的影响。结果表明:造块物料还原产品铁金属化率和磁选精矿指标均优于散料还原产品铁金属化率和磁选精矿指标;随着还原温度的升高、还原时间的延长和给料粒度的减小,两种物料形式还原产品铁金属化率和磁选指标均逐渐提高。造块物料具有良好的热传导性能和微细空隙结构,使其深度还原效果较好,金属铁颗粒粒度较大,颗粒形状也较规则。对还原产品SEM分析结果表明:造块物料经深度还原后金属铁颗粒粒度明显大于散料,物料造块焙烧后对鲕粒的破坏更加显著,说明物料造块后更加有利于铁矿物的还原。造块能够使热量更快传导,铁氧化物界面保持较高浓度的还原气氛,进而加快了金属化反应进程。试验结果可以为深度还原工艺给料形式选择及还原工艺条件优化提供参考。  相似文献   

11.
以某菱铁矿石为原料,采用直接还原-弱磁选工艺,研究了焙烧温度、还原时间、碳铁质量比对还原焙烧产品金属化率的影响,以及磨矿细度、磁场强度对弱磁选指标的影响。结果表明:在还原焙烧温度为1 050 ℃,还原时间为100 min,碳铁质量比为2.3的条件下,得到铁金属化率为90.88%的还原焙烧产品;还原焙烧产品在磨矿细度为-0.037 mm占79.60%,磁场强度为79.62 kA/m下,得到铁品位为92.40%,铁回收率为96.60%的还原铁粉,可直接作为炼钢原料。  相似文献   

12.
湖南某赤铁矿石铁品位约27%,大部分铁矿物嵌布粒度在5 μm左右。对该矿石进行煤基直接还原-弱磁选试验研究,主要考察了还原温度、还原时间对还原效果的影响以及磨矿细度、磁场强度对弱磁选效果的影响。试验结果表明:将原矿压团后与烟煤(煤与矿的质量比为2∶1)在1 150 ℃下还原焙烧100 min,所得还原矿的金属化率为93.41%;还原矿磨至-0.043 mm占90.22%后在63.68 kA/m的磁场强度下经1次弱磁选,可获得铁品位为75.71%、金属化率为92.11%、铁回收率为91.12%的铁精矿。  相似文献   

13.
以湖南某低品位赤铁矿石低温快速直接还原球团为对象,通过弱磁选、激光粒度分析、SEM、XRD和XPS等技术手段研究了磨矿过程对球团中金属铁的氧化及后续磁选的影响。研究结果表明:①直接还原球团铁品位为31.18%,金属铁含量为26.45%,金属化率达到84.83%,SiO2含量为43.63%,金属铁多为集合体,呈蠕虫状或星点状分散于脉石矿物中,结晶粒度微细,粒径一般为10~30 μm,最大为400 μm。②延长磨矿时间,磨矿产品中铁的金属化率明显下降,磨矿10 min时铁的金属化率为82.24%,磨矿40 min时铁的金属化率降至71.67%;磁选精矿铁品位先大幅度上升后小幅下降,铁回收率先小幅上升后明显下降,铁金属化率明显下降;磁选精矿平均体积粒径、D50、D10均呈先快后慢的下降趋势,金属铁的单体解离度呈先快后慢的上升趋势;磨矿10 min时磁选精矿铁的金属化率为81.10%,磨矿40 min时铁的金属化率降至62.99%。③延长磨矿时间,磨矿产品中金属铁的衍射峰减弱,Fe3O4的衍射峰从无到有,从弱到强。Fe 2p3/2轨道结合能随着磨矿时间的延长而升高,金属铁颗粒表面的氧化程度加深。④SEM-EDS分析表明,磁选精矿金属铁颗粒表面与氧发生了结合,且磨矿时间越长氧含量越高,絮状含铁区域也呈现这样的特征。综上所述,还原球团中的金属铁在磨矿过程会发生氧化,且磨矿时间越长氧化程度越高。  相似文献   

14.
在CO/CO2/N2体积比为33/12/55, 温度为900 ℃和分层布料条件下, 以5种具有不同反应性的焦炭为还原剂, 对含铁炉料进行还原试验研究。结果表明, 即使在叉子曲线理论还原平衡点以下, 高反应性焦炭也可还原出金属铁。随着焦炭反应性增强, 焦炭气化速率加快, 含铁炉料颗粒周围的CO体积分数逐渐升高, 料层压差略有升高, 含铁炉料的还原度逐渐增高。配加高反应性焦炭可促进高炉热保存带含铁炉料的还原, 提高进入软熔带区域炉料的金属化率。  相似文献   

15.
采用深度还原技术处理高磷鲕状赤铁矿可以取得良好的技术经济指标,但添加剂(如CaO和Na2CO3)在深度还原过程中的作用仍需深入研究。以鄂西某宁乡式高磷鲕状赤铁矿石为原料,考察还原温度、还原时间、碳氧摩尔比对还原指标的影响。结果表明,适宜的深度还原条件为还原温度1 523 K、还原时间30 min、碳氧摩尔比2.0,获得的还原物料铁金属化率为86.21%,还原物料经磁选获得的磁选精矿铁品位为91.69%、回收率为92.23%。在最佳还原条件下分别以CaO和Na2CO3为添加剂进行深度还原试验,采用化学成分分析和X射线衍射(XRD)探究了CaO和Na2CO3用量对高磷鲕状赤铁矿石深度还原分选指标、脱磷效果和物相转变的影响。结果表明,添加CaO和Na2CO3均可抑制深度还原过程中铁橄榄石的生成,有效降低精矿中磷含量,提高铁回收率;CaO可与物料中的SiO2和Al2O3反应生成硅灰石和钙铝黄长石等高熔点硅酸盐,不利于铁品位的提高;Na2CO3可与物料中的SiO2和Al2O3反应生成钠长石等低熔点硅酸盐,有利于铁品位的提高。  相似文献   

16.
吴霞 《矿业快报》2006,25(3):17-19
研究了实验室超纯铁精矿粉制备还原铁粉碳还原工艺过程。讨论了还原温度、还原时间、配碳量、脱硫剂添加量等工艺参数对海绵铁金属化率的影响,提出了在本实验条件下,用超纯铁精矿粉生产还原铁粉原料的最佳工艺参数。在此最佳工艺参数下,生产海绵铁粉的金属化率达到99.14%,为海绵铁粉二次还原工艺提供料了优质原料。  相似文献   

17.
青海某难处理含砷金矿矿石性质较为复杂,产出的金精矿金品位及回收率均较低。为充分掌握矿石性质、提高金品位及回收率,利用偏光显微镜、场发射扫描电子显微镜(SEM)等手段对矿石进行了系统 的工艺矿物学研究。结果表明:①不同矿区金品位分布极不均匀,平均Au品位3.0 g/t;矿石中主要金属矿物为黄铁矿,少量闪锌矿和方铅矿以及微量黄铜矿,并且含有少量毒砂,主要非金属矿物为石英和长石,以及 部分绿帘石、透辉石、绢云母、方解石。②矿石中金矿物主要为含量81.58%的银金矿,其余为含量14.80%的自然金与含量3.62%的金银矿;矿石中金矿物颗粒细小,细粒金占93.39%,微粒金占6.64%,最大粒径为31 μ m,最小粒径为2 μm,平均粒径为10 μm;金矿物的赋存状态有包裹金、晶隙金和裂隙金3种,包裹金占79.30%,晶隙金占12.76%,裂隙金占7.94%;金矿物的形态以圆粒状为主,其余为长条状与不规则状。③矿石中 主要载金矿物为黄铁矿和少量毒砂,相比理想黄铁矿中铁含量,矿石中普通黄铁矿与载金黄铁矿中Fe含量分别低2.06个百分点和2.66个百分点,表现出低铁高硫的特征;普通毒砂与载金毒砂中的Fe、As含量相较于理 想含量低,其中普通毒砂Fe、As含量分别低1.65个百分点、3.30个百分点;载金毒砂Fe、As含量分别低0.50个百分点、6.15个百分点,普通毒砂与载金毒砂中S含量分别比理想含量高4.28个百分点和6.65个百分点。④ 矿石中主要载金矿物为黄铁矿,且金的粒度为微细粒,建议通过细磨提高黄铁矿的单体解离度,同时强化黄铁矿的捕收,以进一步增加金的回收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号