首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
随着收集和存储数据的能力不断提高;真实数据通常由不同的表现形式(视图)组成。因此多视图学习在机器学习与模式识别领域中扮演着重要的角色。近年来;多种多视图学习方法被提出并应用于不同的实际场景中。然而;在目标函数中大部分数据点存在平方残差;少数误差较大的离群点很容易令目标函数失效;因此如何处理冗余数据是多视图学习面临的重要挑战。为解决上述问题;提出一种鲁棒自加权的多视图子空间聚类模型。该模型利用Frobenius范数来处理数据的平方误差的同时利用[?1]范数来处理数据的离群点;有效地平衡了离群点与普通数据点对性能的影响。此外;与通过引入超参数来衡量不同视图对模型的影响的传统方法不同;该模型自动学习了每个视图的权重。由于该模型是一个非光滑非凸问题;很难直接求解;设计了一个有效的算法并分析了算法的收敛性和计算复杂度。相比于传统的多视图子空间聚类算法;在多个多视图数据集上的实验结果表明了算法的有效性。  相似文献   

2.
现有的多视图聚类方法大多直接在原始数据样本上构建各视图的相似图,而原始数据中的冗余特征和噪声会导致聚类精度下降。针对该问题,基于特征选择和鲁棒图学习提出多视图聚类算法FRMC。在自适应选择不同视图特征时降低数据维度,减少冗余特征,同时利用自表示学习获取数据的表示系数,滤除噪声影响并得到数据样本的全局结构,从而去除样本中的噪声和离群点。在此基础上,通过自适应近邻学习构造样本鲁棒图,利用鲁棒图矩阵的加权和构建最终的亲和图矩阵,提出一种基于增广拉格朗日乘子的交替迭代算法对目标函数进行优化。在6个不同类型的标准数据集上进行实验,与SC、RGC、AWP等算法的对比结果表明,FRMC算法能够有效提升聚类精度且具有较好的收敛性与鲁棒性。  相似文献   

3.
现有多视图子空间聚类算法通常先进行张量表示学习, 进而将学习到的表示张量融合为统一的亲和度矩阵. 然而, 因其独立地学习表示张量和亲和度矩阵, 忽略了两者之间的高度相关性. 为了解决此问题, 提出一种基于一步张量学习的多视图子空间聚类方法, 联合学习表示张量和亲和度矩阵. 具体地, 该方法对表示张量施加低秩张量约束, 以挖掘视图的高阶相关性. 利用自适应最近邻法对亲和度矩阵进行灵活重建. 使用交替方向乘子法对模型进行优化求解, 通过对真实多视图数据的实验表明, 较于最新的多视图聚类方法, 提出的算法具有更好的聚类准确性.  相似文献   

4.
随着数据来源方式的多样化发展,多视图聚类成为研究热点。大多数算法过于专注利用图结构寻求一致表示,却忽视了如何学习图结构本身;此外,一些方法通常基于固定视图进行算法优化。为了解决这些问题,提出了一种基于相似图投影学习的多视图聚类算法(multi-view clustering based on similarity graph projection learning, MCSGP),通过利用投影图有效地融合了全局结构信息和局部潜在信息到一个共识图中,而不仅是追求每个视图与共识图的一致性。通过在共识图矩阵的图拉普拉斯矩阵上施加秩约束,该算法能够自然地将数据点划分到所需数量的簇中。在两个人工数据集和七个真实数据集的实验中,MCSGP算法在人工数据集上的聚类效果表现出色,同时在涉及21个指标的真实数据集中,有17个指标达到了最优水平,从而充分证明了该算法的优越性能。  相似文献   

5.
多视图子空间聚类旨在挖掘多视图的丰富信息来指导高维数据聚类,其研究关键在于如何有效地学习多视图统一表示和子空间表示.近年来,深度聚类方法利用神经网络强大的表征能力取得了优异的性能.然而,多视图数据固有的多源异构性使得大多数现有方法以单模态编码器实现对各个视图的独立编码,不仅增加了模型参数量,同时限制了模型的泛化能力.另一方面,低秩子空间表示被证明能够提升聚类性能,传统的核范数正则化优化没有考虑不同奇异值隐含的信息量差异,是矩阵秩的一个有偏估计.为此,提出了一种面向子空间聚类的多视图统一表示学习网络.首先,基于Transformer构建编码器,通过共享参数将异构视图以相同的映射规则投影到低维特征空间.其次,针对每个样本在不同视图中可能具有不同的表现,采用视图内样本加权融合的方法学习多视图统一表示.最后,引入加权Schatten-p范数对子空间表示矩阵施加低秩约束.在7个多视图数据集上的广泛实验验证了所提方法的有效性和优越性.  相似文献   

6.
多视图子空间聚类方法因其可以揭示数据内在的低维结构而被广泛关注,但大多数现有的多视图子空间聚类算法直接将多个来自原始数据的充满噪声的相似度矩阵进行融合,并且通常是在得到一致的多视图表示之后再使用K均值算法聚类得到最终的结果,这种将表示的学习过程和后续的聚类过程分离的两阶段算法会导致无法得到最优的聚类结果.为了解决这些问题,提出一种单步划分融合多视图子空间聚类算法.该算法不是直接融合具有噪声和冗余信息的相似度矩阵,而是从相似度矩阵中提取出更具有判别性信息的划分级信息进行融合.提出一个新的框架,将表示学习、多视图信息融合以及最后的聚类过程整合在同一框架中.这三个过程彼此促进,好的聚类结果可以引导生成更好的多视图表示,从而得到更好的聚类效果.提出一种有效的轮替优化算法来解决由此得到的优化问题.最后,在四个真实的基准数据集上得到的实验结果可以证明提出方法的有效性以及先进性.  相似文献   

7.
为了有效地融合多视图信息并使有利于多视图完整子空间学习的视图主导多视图学习,提出了多视图协同完整子空间学习策略。进一步,为了使对象在潜在完整子空间中的完整特征表示具有更好的鉴别能力,将Fisher鉴别分析引入到了多视图完整子空间学习中。Fisher鉴别分析可以在最小化对象的完整特征表示的类内散度的同时最大化对象的完整特征表示的类间散度。将多视图协同完整空间学习策略和Fisher鉴别分析融合在一起,提出了鲁棒多视图协同完整鉴别子空间学习算法。实验结果表明,所提算法能够有效地融合多视图信息并挖掘鉴别信息,是一种有效的多视图完整子空间学习算法。  相似文献   

8.
针对多视图深度子空间聚类网络(Multi-view Deep Subspace Clustering Networks, MvDSCN)算法具有的没有充分利用多视图互补信息、进行一次聚类直接得到聚类结果,以及只考虑数据级信息融合而降低了聚类性能等缺点,提出两级联合融合的多视图子空间聚类改进算法(TJ-MvDSCN)。不仅关注多视图共性信息,还关注多视图互补信息;增加分配级别的多视图信息融合,与已有的数据级信息融合形成两级融合结构;增加聚类损失,基于迭代优化策略构建一个可以联合学习特征表示和聚类分配的多视图聚类框架。经实验验证,该算法性能优于现有算法。  相似文献   

9.
多视图聚类旨在综合利用视图数据中的一致信息和互补信息实现对数据的划分,但各视图表征数据的能力参差不齐,甚至有的视图可能含有大量的冗余和噪声信息,不仅不能带来多样的信息,反而影响聚类性能.本文提出了自适应加权的低秩约束的多视图子空间聚类算法,通过自适应学习的方式给各视图赋予不同权重来构造各视图共享的潜在一致低秩矩阵.并且...  相似文献   

10.
针对现存的基于自适应邻域的多视图聚类算法没有考虑噪声和共识图信息损失的问题,提出一种基于自适应邻域的鲁棒多视图聚类(RMVGC)算法.首先,为了避免噪声和异常值对数据的影响,通过鲁棒主成分分析模型(RPCA)从原始数据中学习多个干净的低秩数据;其次,用自适应邻域学习直接融合多个干净的低秩数据来得到一个干净的共识关系图,...  相似文献   

11.
多视角子空间聚类方法通常用于处理高维度、复杂结构的数据.现有的大多数多视角子空间聚类方法通过挖掘潜在图信息进行数据分析与处理,但缺乏对潜在子空间表示的监督过程.针对这一问题,本文提出一种新的多视角子空间聚类方法,即基于图信息的自监督多视角子空间聚类(SMSC).它将谱聚类与子空间表示相结合形成统一的深度学习框架.SMS...  相似文献   

12.
多视图聚类在图像处理、数据挖掘和机器学习等领域引起了越来越多的关注. 现有的多视图聚类算法存在两个不足, 一是在图构造过程中只考虑每个视图数据之间的成对关系生成亲和矩阵, 而缺乏邻域关系的刻画; 二是现有的方法将多视图信息融合和聚类的过程相分离, 从而降低了算法的聚类性能. 为此, 提出一种更为准确和鲁棒的基于二部图的联合谱嵌入多视图聚类算法. 首先, 基于多视图子空间聚类的思想构造二部图进而产生相似图, 接着利用相似图的谱嵌入矩阵进行图融合, 其次, 在融合过程中考虑每个视图的重要性进行权重约束, 进而引入聚类指示矩阵得到最终的聚类结果. 提出的模型将二部图、嵌入矩阵与聚类指示矩阵约束在一个框架下进行优化. 此外, 提供一种求解该模型的快速优化策略, 该策略将优化问题分解成小规模子问题, 并通过迭代步骤高效解决. 提出算法和已有的多视图聚类算法在真实数据集上进行实验分析. 实验结果表明, 相比已有方法, 提出算法在处理多视图聚类问题上是更加有效和鲁棒的.  相似文献   

13.
提出了一种新的面向图的一致性多视角稀疏聚类框架,该方法先将多视角数据分解为一致性与不一致性部分;然后采用相似性度量方法与KNN(K-nearest neighbor)算法对多视角数据进行分解与融合;再运用稀疏表示学习多视角图的一致性相似矩阵,进而通过谱聚类获取聚类结果.最后,设计并实现了一种交替迭代优化算法求解目标函数,并在八个多视角数据集上通过对比实验验证了该方法的有效性.  相似文献   

14.
文杰  颜珂  张正  徐勇 《自动化学报》2023,49(7):1433-1445
传统多视角聚类都基于视角完备假设, 要求所有样本的视角信息完整, 不能处理存在部分视角缺失情形下的不完整多视角聚类任务. 为解决该问题, 提出一种基于低秩张量图学习的不完整多视角聚类方法. 为了恢复相似图中缺失视角所对应的样本关联信息, 该方法将低秩张量图约束和视角内在图保持约束融入到多视角谱聚类模型. 通过在一个统一模型中同时挖掘视角间的互补信息和视角内未缺失样例的关联信息, 所提出的方法能够得到表征样例邻接关系的完整相似图和视角间一致的最优聚类指示矩阵. 与12种不完整多视角聚类方法进行实验对比, 实验结果表明所提出的方法在多种视角缺失率下的5个数据集上获得了最好的聚类性能.  相似文献   

15.
随着多媒体和数据采集技术的快速发展,多视角数据越来越常见。相比于单视角数据,多视角数据可以提供更丰富的描述信息,提高样本结构信息的挖掘效率。针对多视角子空间聚类任务,提出基于双跨视角相关性检测的多视角子空间聚类算法。首先,考虑噪声干扰和高维数据冗余性对多视角聚类效果的影响,采用线性投影变换来获得原始数据的低维低冗余潜在表示,并利用其进行自表示学习获得准确的子空间表示。其次,为了充分挖掘多视角数据的互补性信息,对潜在特征表示和子空间表示进行跨视角相关性关系检测,具体为:将多视角潜在特征视为低层次表示,利用希尔伯特-施密特独立性准则(HSIC)探索和保留多视角特征的多样性属性;对于包含一致的高层次聚类结构信息的多视角子空间表示,引入低秩张量约束充分捕获跨视角高阶相关性关系和互补性信息。最后,采用增广拉格朗日乘子交替方向极小化算法求解模型的优化问题。在真实数据上的实验结果表明,与对比方法中的次优方法相比,该算法在6个基准数据集上的聚类准确率分别提高了3.00、3.60、1.90、2.00、7.50和1.90百分点,该结果验证了该算法的优越性和有效性。  相似文献   

16.
随着数据量的增大,多视图聚类中出现带有缺失视图数据的情况愈发常见,此问题被称为不完备多视图聚类,而引入深度模型进行聚类通常可以获得比浅层模型更为出色的表现。本文提出一种新颖的深度不完备多视图聚类模型,称为改进的自步深度不完备多视图聚类。在该模型中,充分考虑多视图数据之间的互补性,利用基于多视图特性的最近邻填充方案将缺失视图补全。使用多个自编码器分别获取多个视图数据的低维潜在特征,同时引入图嵌入策略保持潜在特征之间的几何结构。运用一致性原则将来自不同的视图潜在特征融合以获得一致潜在特征,在此基础上运用自步学习的方法来增强聚类效果。实验结果表明,对比现有的不完备多视图聚类模型,本文模型可以更加灵活且高效地应对各种不完备多视图聚类情况,提升了不完备多视图聚类的鲁棒性与表现效果。  相似文献   

17.
针对多视图聚类进行的数据表示学习,通常采用浅层模型与线性函数实现数据嵌入,该方式无法有效挖掘多种视图间丰富的数据关系.为充分表示不同视图间的一致性信息与互补性信息,本文提出基于张量图卷积的多视图聚类方法(TGCNMC).该方法首先将传统的平面图拼接为张量图,并采用张量图卷积学习各视图中数据的近邻结构;接着利用图间卷积进...  相似文献   

18.
在现有的多视图聚类研究中,大多数方法没有考虑多视图的多样性,也没有关注数据的高阶邻域信息,导致聚类结果不够准确,难以挖掘数据集的底层信息。为了解决这些问题,提出了基于多样性约束和高阶信息挖掘的多视图聚类算法(MVCDCHO)。首先设计了视图间多样性测量的方法,利用多样性的约束保留数据的交集特征,同时去除多视图的差异特征;然后提出了一种挖掘视图高阶信息的方法,要求多视图的交集特征接近混合相似图,以挖掘数据间相关性所没有关注到的高阶信息;最后将多视图的交集特征融合成共识图,通过谱聚类来获取聚类目标图。另外,设计了一种交替迭代的方法,迭代学习优化目标函数。实验结果表明,MVCDCHO在归一化互信息(NMI)、调整后的兰德指数(ARI)、聚类精度(ACC)多个聚类评价指标上表现出优异的性能。理论分析和实验研究验证了MVCDCHO中多视图多样性和高阶信息的关键作用,证明了MVCDCHO的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号