共查询到17条相似文献,搜索用时 78 毫秒
1.
针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,并且将这些关系进行融合;最后,每个节点根据自身信息以及与邻域节点关系的信息提取更高层次的特征,作为节点的表示,并且根据该表示对节点进行分类。在微博数据集上,与经典的深度随机游走模型、逻辑回归算法有以及最近提出的图卷积网络算法相比,所提算法分类准确率均有大于8%的提升;在DBLP数据集上,与多层感知器相比分类准确率提升4.83%,与图卷积网络相比分类准确率提升0.91%。 相似文献
2.
在机器学习领域,与传统的神经网络相比,图神经网络在社交推荐等任务中发挥着越来越重要的作用,但是目前工作中大多数都使用静态图.针对现有静态图神经网络方法难以考虑社交用户动态特性的问题,通过引入动态图模型提出了一种基于异构动态图模型的社交网络节点分类方法.该方法在动态图建模的基础上,通过基于点边交互的节点特征更新机制和基于循环神经网络的时序聚合方法,实现了高效的动态社交网络节点分类.在多个真实数据集上的实验结果表明,提出方法在动态社交网络数据的节点分类方面有较好的效果,对比静态图和动态图的基准方法有显著的提升. 相似文献
3.
努尔艾合买提·尕依提 《计算机光盘软件与应用》2012,(4):74-75
把细胞内所有生化反应表示为一个网络指为代谢网络,是所有参与代谢过程的化合物之间以及所有催化酶之间的相互作用的反映,是抽象表达对细胞的代谢。在不同的物种中都含有大量的代谢翻译,却代谢网络是高度保守的。要了解包括代谢系统在内的许多自然、社会系统都起着重要的作用,所以要对于复杂网络进行研究并掌握它们的规律意义很大。利用代谢网络对微生物的耐热性进行分类研究对认识和利用细胞代谢过程有很大的帮助,从而促进发酵工程、制药工业等产业的发展。 相似文献
4.
基于支持向量机的无线传感器网络节点定位算法 总被引:1,自引:0,他引:1
机器学习是利用经验来改善自身性能的一种学习方法,而支持向量机(support vector machine, SVM)作为机器学习中的一种新模式,在解决小样本、非线性及高维模式识别等方面有着其特有的优势.基于支持向量机的节点定位算法利用机器学习算法的特性,实现无线传感网络节点定位.其基本思路是将网络区域划分为若干个等分的小格,每一小格代表机器学习算法中一个确定的类别,机器学习算法在学习了已知的信标节点对应的类别后,对未知节点所处位置进行分类,从而进一步确定未知节点的位置坐标.仿真实验表明,“一对一”节点定位算法有较高的定位精度,对测距误差的容忍性较好,同时对信标节点的比例要求并不高,比较适合用于信标节点稀疏的网络环境中;而“决策树”节点定位算法受覆盖空洞的影响并不大,比较适合应用于节点分布不均匀或者存在覆盖空洞的网络环境中. 相似文献
5.
基于K近邻的支持向量机分类方法 总被引:3,自引:0,他引:3
针对支持向量机对噪声和孤立点非常敏感,以及对大规模且交错严重的训练集支持向量个数多,分类速度慢和精度低等问题,基于KNN方法提出KNN-SVM分类器.首先在特征空间中,根据每个样本K个近邻中同类别样本数目的多少来删减样本集,然后对新样本集进行SVM训练;又证明了当取高斯核函数或指数核函数时,上述删减方法可简化为在原空间中进行.该方法减少了由噪声和孤立点以及一些对分类面贡献不大的样本所带给训练器的负担,减少了支持向量的个数,从而与SVM相比,加快了训练和测试速度,提高了分类精度.仿真实验表明KNN-SVM具有上述优势,而且比NN-SVM更能合理地删减样本集,达到更高的分类精度. 相似文献
6.
基于结肠癌基因表达数据,运用信息科学的方法和技术建立结肠癌的预测分类模型,对结肠癌的识别具有重要意义。在建立模型的过程中,如何能够有效的排除噪声基因进而挑选出分类特征基因对结肠癌预测的准确性有着非常重要的影响。针对该类问题,这篇文章提出了一种新的特征基因选取方法,并以支持向量机作为分类器建立结肠癌分类预测模型,最后以结肠癌的基因表达谱作为实验数据进行了实验,实验结果表明上述方法的可行性和有效性. 相似文献
7.
基于支持向量机的控制图模式识别 总被引:3,自引:0,他引:3
为了提高控制图模式识别效果,提出混合核函数支持向量机的模式识别方法。在模型构造中采用一对一多类分类支持向量机,并利用遗传算法优化混合核函数支持向量机参数。仿真和应用结果表明,混合核函数支持向量机对各种模式控制图的总体识别率,I型错判均优于单独核函数、概率神经网络和小波概率神经网络,且具有良好的泛化能力,适合生产现场实时在线工序质量控制。 相似文献
8.
针对短文本具有特征稀疏、不规范、主题不明确等特点,提出一种有效的基于支持向量机的短文本分类方法。由于汉语中依存语法分析准确率和时间效率不高的问题,针对客户文本咨询的特点,在对短文本分类时,本文并未对句子进行依存语法的分析,而是主要使用句法特征进行分析,找出文本的子串和子序列形成候选特征集,之后利用信息增益、互信息、卡方统计3种特征选择方法进行有效特征选择,最后采用支持向量机方法进行文本分类。将本文所提的模型应用于一组真实数据,实验结果表明,平均正确率可达到84.19%,从而验证该分类方法的鲁棒性和有效性。 相似文献
9.
10.
11.
为了更好地学习网络中的高阶信息和异质信息,基于单纯复形提出单纯复形—异质图注意力神经网络方法—SC-HGANN。首先,用单纯复形提取网络高阶结构,将单纯复形转换为单纯复形矩阵;其次,使用注意力机制从特征单纯复形中得到异质节点的特征;再次,对同质和异质单纯复形矩阵进行卷积操作后,得到同质特征与异质特征,通过注意力算子进行特征融合;最后,得到目标节点的特征并将其输入到节点分类模块完成分类。与GCN、HGNN、HAN等基线方法相比,提出的方法在三个数据集上的macro-F1、micro-F1、precision和recall均有所提升。表明该方法能有效地学习网络中的高阶信息和异质信息,并能提升网络节点分类的准确率。 相似文献
12.
支持向量机方法具有良好的分类准确率、稳定性与泛化性,在网络流量分类领域已有初步应用,但在面对大规模网络流量分类问题时却存在计算复杂度高、分类器训练速度慢的缺陷。为此,提出一种基于比特压缩的快速SVM方法,利用比特压缩算法对初始训练样本集进行聚合与压缩,建立具有权重信息的新样本集,在损失尽量少原始样本信息的前提下缩减样本集规模,进一步利用基于权重的SVM算法训练流量分类器。通过大规模样本集流量分类实验对比,快速SVM方法能在损失较少分类准确率的情况下,较大程度地缩减流量分类器的训练时间以及未知样本的预测时间,同时,在无过度压缩前提下,其分类准确率优于同等压缩比例下的随机取样SVM方法。本方法在保留SVM方法较好分类稳定性与泛化性能的同时,有效提升了其应对大规模流量分类问题的能力。 相似文献
13.
在企业网络中,若其内部的攻击者获得了用户的身份认证信息,其行为与正常用户将很难区分;而目前研究对于企业网中的异常用户检测方法比较单一,召回率不高。用户的认证活动信息直接反映了用户在网络中与各类资源或人员的交互,基于此,提出一种利用用户认证活动信息来检测网络中异常用户的方法。该方法利用用户的认证活动生成用户认证图,之后基于图分析方法提取认证图中的属性,如图的最大连通组件的大小、孤立认证的数量等,这些属性反映了用户在企业网中的认证行为特征。最后利用有监督的支持向量机(SVM)对提取到的图属性进行建模,以此来间接识别和检测网络中的异常用户。在提取了用户图向量之后,具体对训练集和测试集、惩罚参数、核函数取不同值的情况进行了分析。通过对这些参数的调节,召回率、精确率和F1-Score均达到80%以上。实验数据表明,该方法能够有效检测企业网络中的异常用户。 相似文献
14.
15.
16.
社会化推荐系统通过用户的社会属性信息能缓解推荐系统中数据稀疏性和冷启动问题,从而提高推荐系统的精度。然而大多数社会化推荐方法主要针对单一的社交网络,或对多个社交网络进行线性叠加,使得用户社会属性难以充分参与计算,因而推荐的精度有限。针对该问题,提出一种多重网络嵌入的图形神经网络模型来实现复杂多维社交网络下的推荐,该模型构建了统一的方法来融合用户-物品、用户-用户等各种关系构成的多维复杂网络,通过注意力机制聚合不同类型的多邻居对节点生成作出贡献,并将多个图神经网络进行组合,从而构建了多维社交关系下的图神经网络推荐框架。这种方法通过拓扑结构直接反映推荐系统中实体及其相互间关系,直接在图上对相关信息进行不断更新计算,具有很强的归纳性,有效避免了传统推荐方法中信息利用不完全的问题。通过与相关的社会推荐算法进行比较,实验结果表明,所提方法在均方根误差(RMSE)和平均绝对误差(MAE)等推荐精度指标上有所改善,甚至在数据稀疏情况下也有良好的精度。 相似文献
17.
社会化推荐系统通过用户的社会属性信息能缓解推荐系统中数据稀疏性和冷启动问题,从而提高推荐系统的精度。然而大多数社会化推荐方法主要针对单一的社交网络,或对多个社交网络进行线性叠加,使得用户社会属性难以充分参与计算,因而推荐的精度有限。针对该问题,提出一种多重网络嵌入的图形神经网络模型来实现复杂多维社交网络下的推荐,该模型构建了统一的方法来融合用户-物品、用户-用户等各种关系构成的多维复杂网络,通过注意力机制聚合不同类型的多邻居对节点生成作出贡献,并将多个图神经网络进行组合,从而构建了多维社交关系下的图神经网络推荐框架。这种方法通过拓扑结构直接反映推荐系统中实体及其相互间关系,直接在图上对相关信息进行不断更新计算,具有很强的归纳性,有效避免了传统推荐方法中信息利用不完全的问题。通过与相关的社会推荐算法进行比较,实验结果表明,所提方法在均方根误差(RMSE)和平均绝对误差(MAE)等推荐精度指标上有所改善,甚至在数据稀疏情况下也有良好的精度。 相似文献