共查询到17条相似文献,搜索用时 78 毫秒
1.
针对以最小化最大完工时间为目标函数的柔性作业车间调度问题,建立其数学模型并提出了一种两段式狼群算法加以求解.采用两段式(two-vector code)的编码方式,设计初始化种群的方式,保证初始解的质量及多样性;通过对原始狼群算法中游走行为、召唤行为、围攻行为的重新设计,解决了原始狼群算法易陷入局部最优的问题;舍弃原始... 相似文献
2.
针对多目标柔性作业车间调度问题,以最小化最大完工时间、最小化机器总负荷、最小化机器最大负荷为目标,提出一种改进邻域结构的离散萤火虫算法。首先,采用多种策略相结合的方式初始化种群,提高算法初始解质量以及种群多样性;其次,通过改进关键路径的邻域结构并设计离散萤火虫算法的位置更新公式,以增强算法全局搜索和局部搜索能力;最后,将该算法应用于标准数据集,并将求解结果与其他算法进行对比,验证了所提算法的有效性。 相似文献
3.
论文针对柔性车间调度问题(Flexible Job-shop Scheduling Problem,FJSP),以最小完工时间为优化目标,根据标准布谷鸟算法(Cuckoo Search,CS)的核心思想,提出了一种双层编码的离散布谷鸟算法.根据levy飞行的特点,采用2-opt和double-bridge操作代替lev... 相似文献
4.
姜天华 《计算机工程与应用》2018,54(23):259-263
根据柔性作业车间的生产特点,对基本猫群优化算法进行设计和改进,提出了一种改进型猫群优化算法(Improved Cat Swarm Optimization,ICSO),用于优化车间内工件的最大完工时间。算法给出了两段式个体位置编码方式和基于启发式算法的种群初始化策略;采用自适应行为模式选择方法,使其能够有效协调算法全局和局部搜索;提出了基于多样化搜寻算子的搜寻模式,增强算法的全局搜索能力;提出了基于莱维飞行的跟踪模式,增强算法的局部搜索能力。此外,算法中还引入了跳跃机制,使算法性能能够得到进一步的改善。实验数据表明ICSO算法在求解FJSP问题方面具有一定的有效性。 相似文献
5.
《计算机应用与软件》2016,(6)
针对作业车间调度问题JSP(Job-shop scheduling problem),提出一种入侵式杂草优化算法。该算法中,子代以正态分布方式在父代个体周围扩散,兼顾全局搜索和局部搜索,并根据迭代次数不同对二者强度进行调节。通过典型算例进行仿真试验,并在反复实验中对算法参数进行修正。测试结果表明杂草算法求解作业车间调度问题的可行性和有效性,优于萤火虫算法和基本粒子群算法,是解决生产调度问题的一种有效方法。 相似文献
6.
提出一种混合正余弦鲸鱼优化算法,将其应用于柔性作业车间调度问题的研究,以最小化最大完工时间为目标;首先进行两段式编码,使连续型鲸鱼优化算法可应用于柔性作业车间调度问题,并对基本鲸鱼优化算法加入非线性收敛因子平衡搜索与开发阶段;以正余弦算法策略改进鲸鱼个体位置更新方式与螺旋方式,提升算法寻优能力;最后以实验数据验证混合正... 相似文献
7.
将灰狼优化算法(GWO)用于柔性作业车间调度问题(FJSP),以优化最大完工时间为目标,提出一种混合灰狼优化算法(HGWO).首先,采用两段式编码方式,建立GWO连续空间与FJSP离散空间的映射关系;其次,设计种群初始化方法,保证算法初始解的质量;然后,嵌入一种变邻域搜索策略,加强算法的局部搜索能力,引入遗传算子,提升算法的全局探索能力;最后,通过实验数据验证HGWO算法在求解FJSP问题方面的有效性. 相似文献
8.
柔性作业车间调度问题是智能制造领域的一类典型调度问题,它是制造流程规划和管理中最关键的环节之一,有效的求解方法对提高生产效率具有重要的现实意义。本文基于经典灰狼算法进行改进,以优化最大完工时间为目标,提出一种改进的灰狼算法来求解柔性作业车间调度问题。算法首先采用基于权值的编码形式,实现对经典狼群算法中连续性编码的离散化;其次在迭代优化过程中加入随机游走策略,以增强局部搜索能力;然后在种群更新过程中加入尾部淘汰策略,在避免局部优化的同时增加种群多样性,合理扩大算法的广度搜索范围。在标准算例上的仿真实验结果表明,改进的灰狼算法在求解FJSP时比经典灰狼算法在寻优能力方面具有明显的优势,相比其它智能优化算法,本文所提算法在每种算例上均具有更好的优化性能。 相似文献
9.
10.
针对分布式柔性作业车间调度问题的特点,提出一种改进人工蜂群算法.首先,建立以最小化最大完工时间为优化目标的分布式柔性作业车间调度优化模型;然后,改进基本人工蜂群算法以使其适用于求解分布式柔性作业车间调度问题,具体的改进包括设计一种包含三维向量的编码方案,结合问题特点针对性地设计多种策略用于种群初始化,在雇佣蜂改良搜索操作中设计多种有效的进化操作算子,并在跟随蜂搜索操作中引入基于关键路径的局部搜索算子以提升算法的局部搜索能力;最后,利用扩展柔性作业车间通用测试集得到的测试数据设计实验验证算法性能,使用正交试验法优化算法参数设置.仿真实验结果表明,改进后的人工蜂群算法能有效求解分布式柔性作业车间调度问题. 相似文献
11.
为有效解决复杂的柔性作业车间调度问题,以最小化最大完成时间为目标,提出了一种结合了变邻域搜索算法的新型改进Jaya算法来求解。为不断挖掘和优化探索最优解,提高算法求解的结果质量,通过Jaya算法的原理重新提出一种解的更新机制,此外在Jaya算法原理的基础上嵌入一种变邻域搜索策略,并在传统邻域结构的基础上重新设计了两种新型邻域结构,扩大了邻域搜索范围,增强了Jaya算法的局部搜索能力,避免算法因失去解的多样性从而陷入局部最优。运用基准算例对该算法的求解性能进行了验证,并与其他算法的仿真结果进行对比,结果表明该改进算法的求解效率更高。 相似文献
12.
针对加工时间为模糊数的柔性作业车间调度问题,考虑最小化模糊最大完工时间、模糊机器总负荷、模糊关键机器负荷为优化目标,提出一种有效求解该类优化问题的多目标进化算法。算法采用一种混合不同机器分配和工序排序策略的方法产生初始种群,并采用插入空隙法对染色体进行解码。定义一种新的基于可能度的个体支配关系和一种基于决策空间的拥挤算子,并将所提支配关系和拥挤算子运用于快速非支配排序。接着,提出一种基于移动模糊关键工序的局部搜索策略对种群中的优势个体进行局部搜索。通过试验研究关键参数对算法性能的影响并将所提算法与3种不同的优化算法作对比。结果表明,所提算法能够比其它算法更有效解决多目标模糊柔性作业车间调度优化问题。 相似文献
13.
构造用于作业车间调度问题的文化算法,模拟文化的进化实现对问题的寻优,通过算法中信念空间和种群空间的相互联系和相互促进实现求解。算法采用固定优先表编码方式,其种群空间采用遗传算法作为进化手段,采用较独特的信念提取方式构造算法的信念空间并促使其进化。将该算法应用于作业车间调度问题标准实例,证明其有效性。 相似文献
14.
针对机器资源和加工路线可选择情况下的柔性车间调度,以最小最大完工时间和时间惩罚成本为目标建立柔性车间E/T调度模型.根据问题特点,提出一种改进的萤火虫算法(GSO),算法设计了一种具有贪婪思想的编码策略,一个萤火虫个体表示工序加工顺序和工序加工位置;采用自适应选择策略,使步长自适应,提高算法精度;引入POX交叉、邻域交换和反序排序方法提高算法局部和全局寻优能力,并利用贪婪思想,提高算法的收敛速度.通过经典算例和实例验证算法性能,实验结果表明改进的萤火虫算法求解柔性车间调度问题的有效性. 相似文献
15.
车间生产调度问题是典型的NP问题,近年来随着免疫算法的出现和发展,用来解决车间生产调度问题的免疫思想和方法也层出不穷。本文对克隆选择算法解决生产调度问题的各个步骤所采用的方法进行总结,分析了各种方法的适用范围,为设计更好的算法奠定了良好的基础。 相似文献
16.
在生产调度领域,柔性作业车间调度问题是一个非常重要的优化问题。大多数研究通常优化的目标只是最大完工时间,而在实际中,往往要考虑多个目标。因此,提出了一种新的混合多目标算法用于解决柔性作业车间调度问题,其中考虑了3个目标,分别是:最大完工时间、机器总负载和瓶颈机器负荷。算法设计了有效的编码方式和遗传算子,并采用非支配近邻免疫算法求解非支配最优解。为了提高算法性能,提出了3种不同的局部搜索策略,并将其结合在多目标算法中。在多个数据集上的实验对比结果表明,所提算法优于其它代表性的算法。此外,实验结果还验证了局部搜索技术的有效性。 相似文献
17.
以某大型家具企业的柔性生产制造过程中调度问题为研究对象,提出了一种主要用于求解柔性作业车间调度问题的多策略鲸鱼优化算法(multi-strategy whale optimization algorithm, MWOA),首先,为了提高初始种群的多样性,引入混沌理论来初始化种群;同时设计了非线性收敛因子和自适应惯性权重系数来平衡全局探索和局部开发能力;然后结合差分进化(differential evolution, DE)算子提高了WOA的利用和搜索能力,最后采取最优个体混沌搜索策略,减少WOA算法出现早熟收敛现象的概率.以最小化最大完工时间为求解目标,对基准测试问题与某家具企业的生产制造过程的调度优化问题进行了求解,结果表明提出来的多策略鲸鱼优化算法克服了基本鲸鱼优化算法寻优精度低、收敛速度慢及容易陷入局部最优等缺陷,与对比算法比较,取得了更好的寻优效果. 相似文献