共查询到19条相似文献,搜索用时 77 毫秒
1.
视频中的人体动作识别在计算机视觉领域得到广泛关注,基于人体骨架的动作识别方法可以明确地表现人体动作,因此已逐渐成为该领域的重要研究方向之一。针对多数主流人体动作识别方法网络参数量大、计算复杂度高等问题,设计一种融合多流数据的轻量级图卷积网络,并将其应用于人体骨架动作识别任务。在数据预处理阶段,利用多流数据融合方法对4种特征数据流进行融合,通过一次训练就可得到最优结果,从而降低网络参数量。设计基于图卷积网络的非局部网络模块,以捕获图像的全局信息从而提高动作识别准确率。在此基础上,设计空间Ghost图卷积模块和时间Ghost图卷积模块,从网络结构上进一步降低网络参数量。在动作识别数据集NTU60 RGB+D和NTU120 RGB+D上进行实验,结果表明,与近年主流动作识别方法ST-GCN、2s AS-GCN、2s AGCN等相比,基于该轻量级图卷积网络的人体骨架动作识别方法在保持较低网络参数量的情况下能够取得较高的识别准确率。 相似文献
2.
与传统的基于RGB视频的行为识别任务相比,基于人体骨架的行为识别方法由于其具有受光照、视角和背景复杂度等诸多因素影响非常小的特点,使其成为近几年来计算机视觉领域的主要研究方向之一.但是目前主流的基于人体骨架的行为识别方法都或多或少地存在参数量过大,运算时间过长,计算复杂度过高等问题,从而导致这些方法难以同时满足时效性和... 相似文献
3.
4.
5.
针对现有骨架动作识别主要采用双流框架,在提取时间空间以及通道特征方法上存在的问题,提出一个ADGCN,用于骨架动作识别.首先对骨架数据进行建模,分别将关节、骨骼及其关节和骨骼的运动信息输入到多流框架的单个流.然后将输入的数据传送到提出的有向图卷积网络中进行提取关节和骨骼之间的依赖关系,再利用提出的时空通道注意力网络(STCN),增强每层网络中关键关节的时间、空间以及通道的信息.最后将四个流的信息通过加权平均计算动作识别的精度,输出动作的预测结果.此模型在两个大型数据集NTU-RGB+D和Kinectics-Skeleton中进行训练和验证,验证的结果与基线方法DGNN(有向图神经网络)相比,在NTU-RGB+D数据集上,在两个交叉子集CS和CV上的准确率分别提升了2.43%和1.2%.在Kinectics-Skeleton数据集的top1和top5上的准确率分别提升了0.7%和0.9%.提出的ADGCN可以有效地增强骨架动作识别的性能,在两个大型数据集上的效果都有所提升. 相似文献
6.
现有人体姿态动作识别方法忽视前期姿态估计算法的作用,没有充分提取动作特征,提出一种结合轻量级Openpose和注意力引导图卷积网络的动作识别方法。该方法包含基于shufflenet的Openpose算法和基于不同尺度邻接矩阵注意力的图卷积算法。输入视频由轻量Openpose处理得到18个人体关键点信息,表达为基础时空图数据形式。节点的不同尺度邻居信息对应的邻接矩阵通过自注意力机制计算影响力,将各尺度邻接矩阵加权合并输入图卷积网络提取特征。提取到的鉴别特征通过全局平均池化和softmax分类器输出动作类别。在Le2i Fall Detection数据集和自定义的UR-KTH数据集上的实验表明,动作识别的准确率分别为95.52%和95.07%,达到了预期效果。 相似文献
7.
针对当前基于二维图像的人体动作识别算法鲁棒性差、识别率不高等问题,提出了一种融合卷积神经网络和图卷积神经网络的双流人体动作识别算法,从人体骨架信息提取动作的时间与空间特征进行人体动作识别。首先,构建人体骨架信息时空图,利用引入注意机制的图卷积网络提取骨架信息的时间和空间特征;其次,构建骨架信息运动图,将卷积神经网络网络提取到骨架运动信息的特征作为时空图卷积网络所提取特征的时间和空间特征的补充;最后,将双流网络进行融合,形成基于双流的、注意力机制的人体动作识别算法。算法增强了骨架信息的表征能力,有效提高了人体动作的识别精度,在NTU-RGB+D60数据集上取得了比较好的结果,Cross-Subject和Cross-View的识别率分别为86.5%和93.5%,相比其他同类算法有一定的提高。 相似文献
8.
9.
10.
复句的关系识别是为了区分句子语义关系的类别,是自然语言处理(NLP)中必不可少的基础研究任务。现有研究无法使机器在表层判别缺少显式句间连接词句子的语义关系类型。该文将Attention机制与图卷积神经网络(GCN)相结合应用到汉语复句语义关系识别中,通过BERT预训练模型获取单句词向量,输入到Bi-LSTM获取句子位置表示,经Attention机制得到各位置间权重构建图网络以捕获句子间的语义信息,通过图卷积抽取深层的关联信息。该文的方法对缺少显式句间连接词句子的关系识别达到了较好的识别效果,为进一步研究计算机自动分析、识别处理复句的基本方法奠定基础。实验结果表明,在汉语复句语料库(CCCS)和汉语篇章树库(CDTB)数据集上,与先前最好的模型相比,其准确率分别为77.3%和75.7%,提升约1.6%,宏平均F1值分别为76.2%和74.4%,提升约2.1%,说明了该文方法的有效性。 相似文献
11.
复杂场景下的群体活动识别是一项具有挑战性的任务,它涉及一组人在场景中的相互作用和相对空间位置关系。针对当前复杂场景下群组行为识别方法缺乏精细化设计以及没有充分利用个体间交互式特征的问题,提出了基于分块注意力机制和交互位置关系的网络框架,进一步考虑个体肢体语义特征,同时挖掘个体间交互特征相似性与行为一致性的关系。首先,采用原始视频序列和光流图像序列作为网络的输入,并引入一种分块注意力模块来细化个体的肢体运动特征;然后,将空间位置和交互式距离作为个体的交互特征;最后,将个体运动特征和空间位置关系特征融合为群体场景无向图的节点特征,并利用图卷积网络(GCN)进一步捕获全局场景下的活动交互,从而识别群体活动。实验结果表明,此框架在两个群组行为识别数据集(CAD和CAE)上分别取得了92.8%和97.7%的识别准确率,在CAD数据集上与成员关系图(ARG)和置信度能量循环网络(CERN)相比识别准确率分别提高了1.8个百分点和5.6个百分点,同时结合消融实验结果验证了所提算法有较高的识别精度。 相似文献
12.
文本分割的主要任务是将文本按照主题相关的原则划分为若干个相对独立的文本块。针对现有文本分割模型提取文本段落结构信息、语义相关性及上下文交互等细粒度特征的不足,提出了一种基于图卷积网络(GCN)的文本分割模型TS-GCN。首先,基于文本段落的结构信息与语义逻辑构建出文本图;然后,引入语义相似性注意力来捕获文本段落节点间的细粒度相关性,并借助GCN实现文本段落节点高阶邻域间的信息传递,以此增强模型多粒度提取文本段落主题特征表达的能力。将所提模型与目前常用作文本分割任务基准的代表模型CATS及其基础模型TLT-TS进行对比。实验结果表明在Wikicities数据集上,TS-GCN在未增加任何辅助模块的情况下比TLT-TS的评价指标Pk值下降了0.08个百分点;在Wikielements数据集上,相较于CATS和TLT-TS,所提模型的Pk值分别下降了0.38个百分点和2.30个百分点,可见TLT-TS取得了较好的分割效果。 相似文献
13.
针对视频人体动作识别中动作信息利用率不高、时间信息关注度不足等问题,提出了一种基于紧耦合时空双流卷积神经网络的人体动作识别模型。首先,采用两个2D卷积神经网络分别提取视频中的空间特征和时间特征;然后,利用长短期记忆(LSTM)网络中的遗忘门模块在各采样片段之间建立特征层次的紧耦合连接以实现信息流的传递;接着,利用双向长短期记忆(Bi-LSTM)网络评估各采样片段的重要性并为其分配自适应权重;最后,结合时空双流特征以完成人体动作识别。在数据集UCF101和HMDB51上进行实验验证,该模型在这两个数据集上的准确率分别为94.2%和70.1%。实验结果表明,所提出的紧耦合时空双流卷积网络模型能够有效提高时间信息利用率和动作整体表达能力,由此明显提升人体动作识别的准确度。 相似文献
14.
针对视频人体动作识别中动作信息利用率不高、时间信息关注度不足等问题,提出了一种基于紧耦合时空双流卷积神经网络的人体动作识别模型。首先,采用两个2D卷积神经网络分别提取视频中的空间特征和时间特征;然后,利用长短期记忆(LSTM)网络中的遗忘门模块在各采样片段之间建立特征层次的紧耦合连接以实现信息流的传递;接着,利用双向长短期记忆(Bi-LSTM)网络评估各采样片段的重要性并为其分配自适应权重;最后,结合时空双流特征以完成人体动作识别。在数据集UCF101和HMDB51上进行实验验证,该模型在这两个数据集上的准确率分别为94.2%和70.1%。实验结果表明,所提出的紧耦合时空双流卷积网络模型能够有效提高时间信息利用率和动作整体表达能力,由此明显提升人体动作识别的准确度。 相似文献
15.
针对单目图像重建人体时出现的头部姿态翻转和图像特征间隐式空间线索缺失的问题,提出了一种基于高分辨率网络(HRNet)和图卷积网络(GCN)的三维人体重建模型。首先利用HRNet和残差块作为主干网络从原始图像中提取丰富的人体特征信息,然后使用GCN来捕获特征之间隐式的空间线索以获得空间精确的特征表示,最后使用此特征来预测多人线性蒙皮模型(SMPL)的参数以得到更加准确的重建结果;同时为了有效解决人体头部姿态翻转的问题,对SMPL的关节点重新进行了定义,在原有关节的基础上增加对头部关节点的定义。实验结果表明,所提模型能够准确地重建出三维人体,在2D数据集LSP上的重建准确率达到了92.41%,在3D数据集MPI-INF-3DHP上的关节误差和重建误差也大幅降低,平均误差仅分别为97.73 mm和64.63 mm,验证了所提模型在人体重建领域的有效性。 相似文献
16.
17.
18.
针对医疗保险欺诈检测当中欺诈样本不足、数据标注昂贵和传统基于欧氏空间的模型准确率低的问题,提出了一种新的基于图卷积和变分自编码的单分类医保欺诈检测模型(OCGVAE)。首先,通过病人就诊记录建立社交网络,计算病人和医生之间的权重关系,并设计了一个2层的图卷积神经网络(GCN)作为社交网络数据的输入,用以降低社交网络的数据维度;然后,设计了一个变分自编码(VAE)用以实现只存在一类欺诈样本标签的情况下的模型训练;最后,设计了一个逻辑回归(LR)模型用以判别数据类别。实验结果表明,OCGVAE模型的检测准确率达到87.26%,相较于一类对抗神经网络(OCAN)、一类高斯过程(OCGP)、一类近邻(OCNN)、一类支持向量机(OCSVM)和半监督图卷积神经网络(Semi-GCN)算法,分别高出16.1%、70.2%、31.7%、36.5%和27.6%,说明所提模型有效提高了医保欺诈筛查精度。 相似文献
19.
微博作为人们获取和传播新闻事件的主要平台,隐藏着丰富的事件信息。从微博数据中抽取故事线能为用户提供一种直观的方式来准确理解事件演化,然而微博数据稀疏和上下文缺乏的特点为故事线抽取带来了挑战。因此,通过两个连续的任务从微博数据中自动抽取故事线:1)基于微博传播影响力对事件进行建模,并提取出首要事件;2)基于事件特征建立异构事件图,提出事件图卷积网络(E-GCN)模型来提升对事件间隐式关系的学习能力,从而实现事件的故事分支预测并链接事件。在真实数据集上从故事分支和故事线两个角度进行评测,结果表明所提方法在故事分支生成测评中,相较于贝叶斯模型、斯坦纳树和故事森林在F1值上,在Dataset1上分别高出28个百分点、20个百分点和27个百分点,在Dataset2上分别高出19个百分点、12个百分点和22个百分点;而在故事线抽取评测中,相较于故事时间线、斯坦纳树和故事森林在正确的边准确率上,在Dataset1上分别高出33个百分点、23个百分点和17个百分点,在Dataset2上分别高出12个百分点、3个百分点和9个百分点。 相似文献