共查询到20条相似文献,搜索用时 62 毫秒
1.
K均值算法是一种常用的基于原型的聚类算法。但该算法要求用户随机选择初始质心,使得K均值算法受初始化影响较大。二分K均值算法虽然改善了这个问题,但仍然要求用户指定聚类个数,影响了聚类效果。用层次聚类对二分法进行改进,解决了二分K均值算法受用户指定的聚类个数的影响的问题。并结合Chameleon算法,合并划分过细簇,优化聚类结果。仿真实验证明改进的聚类算法的抱团性和分离性优于二分K均值聚类算法。 相似文献
2.
胡伟 《计算机工程与应用》2013,49(2):157-159
针对传统K均值聚类方法采用聚类前随机选择聚类个数K而导致的聚类结果不理想的问题,结合空间中的层次结构,提出一种改进的层次K均值聚类算法。该方法通过初步聚类,判断是否达到理想结果,从而决定是否继续进行更细层次的聚类,如此迭代执行,从而生成一棵层次型K均值聚类树,在该树形结构上可以自动地选择聚类的个数。标准数据集上的实验结果表明,与传统的K均值聚类方法相比,提出的改进的层次聚类方法的确能够取得较优秀的聚类效果。 相似文献
3.
K调和均值算法(KHM)用数据点与所有聚类中心的距离的调和平均值替代了数据点与聚类中心的最小距离,是一种对初始值不敏感、收敛速度快的有效聚类算法,但它容易陷入局部最小值。而遗传算法具有良好的全局优化能力。文中结合了KHM和遗传算法各自的优点,采用KHM计算每一代种群的聚类中心,并构造适应度函数,通过遗传算法进行一系列择优操作,成功地解决了KHM容易陷入局部最小值的问题。实验结果表明,所提出的算法不仅优化了聚类中心,而且还改善了聚类质量。 相似文献
4.
针对高分辨率天文图像中的星点聚类研究中存在的 2 个问题:①天文图像的分辨率 较高,且图像处理速度较慢;②选取何种聚类算法对天文图像中的星点进行聚类分析效果较好。 在研究中,问题 1 采用图像分块的方法提高图像的处理速度;问题 2 提出了一种改进的 K 均值聚 类算法,以解决传统的 K 均值聚类算法的聚类结果易受到 k 值和初始聚类中心随机选择影响的问 题。该算法首先在用 K 均值聚类算法对数据初步聚类的基础上确定合适的 k 值,其次用层次聚类 对数据聚类确定初始聚类中心,最后在此基础上再采用 K 均值聚类算法进行聚类。通过 MATLAB 仿真实验的结果表明,该算法的聚类结果与效率优于其他聚类算法。 相似文献
5.
提出了一种改进的K均值聚类图像分割方法。针对彩色图像的像素特征,利用Ohta等人的研究成果,选取能有效表示彩色像素特征的彩色特征集中的第一个分量作为图像像素的一维特征向量,用来替代经典K均值聚类图像分割中的灰度.大大降低了运算量。基于粗糙集理论的算法,求出初始聚类个数与均值。选用对特征空间结构没有特殊要求的特征距离代替欧氏距离,应用改进的K均值聚类算法对样本数据进行聚类,从而实现对彩色图像的快速自动分割。实验表明,该图像分割算法可有效提高图像分类的精度和准确度,并且运算代价小.收敛速度快。 相似文献
6.
7.
K均值算法是最通用的划分聚类算法,然而它有高度依赖初始值和收敛于局部最小的缺点,K调和均值算法采用数据点与所有聚类中心的距离的调和平均替代了数据点与聚类中心的最小距离,解决了K均值算法对初值敏感的问题。这样虽然解决初始值敏感问题,局部最小收敛问题仍然存在。为了获得全局最优解,提出一种新的算法:基于模拟退火算法的K调和均值聚类。该算法将一种优秀的随机搜索算法——模拟退火算法引入K调和均值聚类,来解决局部最小收敛的问题,并将改进后的算法用于IRIS数据集的聚类分析,聚类结果与K均值算法结果对比,证明了改进算法的优越性。 相似文献
8.
蔡志华 《计算机与数字工程》2013,41(8)
为克服K均值聚类算法大幅图像分割时运算代价太大、耗时长等问题,论文在K均值聚类算法的基础上,结合块矩阵、查找表技术提出了一种快速彩色图像分割方法.对大量彩色图像的分割实验表明,新算法比传统的K均值聚类算法快了一个数量级,并且该算法产生了较好的分割结果. 相似文献
9.
基于改进K均值聚类的异常检测算法 总被引:1,自引:0,他引:1
通过改进传统K-means算法的初始聚类中心随机选取过程,提出了一种基于改进K均值聚类的异常检测算法。在选择初始聚类中心时,首先计算所有数据点的紧密性,排除离群点区域,在数据紧密的地方均匀选择K个初始中心,避免了随机性选择容易导致局部最优的缺陷。通过优化选取过程,使得算法在迭代前更加接近真实的聚类类簇中心,减少了迭代次数,提高了聚类质量和异常检测率。实验表明,改进算法在聚类性能和异常检测方面都明显优于原算法。 相似文献
10.
费贤举 《计算机测量与控制》2015,23(4)
针对传统的K均值聚类算法在机械故障检测的过程中,由于对K值的选择具有较强的主观性,最后极易得到局部最优解,而非全局最优解,降低了机械故障检测的准确性.提出一种改进K均值聚类的机械故障智能检测方法;将K均值聚类算法与粒子群算法相结合,在迭代处理的过程中,结合K均值进行优化,即将粒子群算法中的子代个体利用K均值聚类进行运算获取局部最优解,并使用这些个体继续参与迭代处理,这样能够提高算法的收敛速度,避免陷入局部最优解,获得准确的机械故障信号特征;实验结果表明,利用K均值倾斜特征提取的机械故障智能检测算法进行机械故障检测,能够有效提高故障检测的准确性,取得了令人满意的效果. 相似文献
11.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。 相似文献
12.
将模糊K-均值聚类算法与核函数相结合,采用基于核的模糊K-均值聚类算法来进行聚类。核函数隐含地定义了一个非线性变换,将数据非线性映射到高维特征空间来增加数据的可分性。该算法能够解决模糊K-均值聚类算法对于非凸形状数据不能正确聚类的问题。 相似文献
13.
传统K-均值算法对初始聚类中心敏感大,易陷入局部最优值.将遗传算法与K均值算法结合起来进行探讨并提出一种改进的基于K-均值聚类算法的遗传算法,改进后的算法是基于可变长度的聚类中心的实际数目来实现的.同时分别设计出新的交叉算子和变异算子,并且使用的聚类有效性指标DB-Index作为目标函数,该算法很好地解决了聚类中心优化问题,与之前的两种算法相比,改进后的算法改善了聚类的质量,提高了全局的收敛速度. 相似文献
14.
15.
针对集中式系统框架难以进行海量数据聚类分析的问题,提出基于MapReduce的K-means聚类优化算法。该算法运用MapReduce并行编程框架,引入Canopy聚类,优化K-means算法初始中心的选取,改进迭代过程中通信和计算模式。实验结果表明该算法能够有效地改善聚类质量,具有较高的执行效率以及优良的扩展性,适合用于海量数据的聚类分析。 相似文献
16.
从图像数据库中快速、准确地检索出所需要的图像,具有广泛的应用前景。针对使用单一图像特征难以准确表达图像之间的差异问题,提出了一种利用颜色聚类分割和形状特征提取的图像检索算法。选择符合人眼视觉特征的HSV空间,分别重组最能描述图像颜色特征的H分量和形状特征的V分量;用K均值聚类算法对两个分量进行聚类分割,得到目标物体;提取目标物体的Hu不变矩和傅里叶描述子来描述形状特征;用欧式距离进行相似度测量并用于图像检索中。采用不同类型图像进行实验,结果表明该算法优于使用单一特征和一般分割方法的图像检索技术。 相似文献
17.
针对K-均值算法在随机选取初始类中心时存在不足、对噪声和孤立点敏感、不适用于发现大小差别很大的类的问题,借鉴分子间的相互作用力模型,将文本模拟成数据场中的数据点,综合考虑文本间的相似度和相异度,提出一个新的数据势值计算公式。根据文本数据的势,剔除孤立点、确定初始类中心。实验结果证明,该算法可以提高收敛速度,消除噪声和孤立点对聚类结果的影响,提高聚类的精度,适用于主题分布不均匀的文本集。 相似文献
18.
唐立力 《计算机工程与应用》2015,51(19):152-157
根据科技文献的结构特点,搭建了一个四层挖掘模式,提出了一种应用于科技文献分类的文本特征选择方法。该方法首先依据科技文献的结构将其分为四个层次,然后采用K-means聚类对前三层逐层实现特征词提取,最后再使用Aprori算法找出第四层的最大频繁项集,并作为第四层的特征词集合。在该方法中,针对K-means算法受初始中心点的影响较大的问题,首先采用信息熵对聚类对象赋权的方式来修正对象间的距离函数,然后再利用初始聚类的赋权函数值选出较合适的初始聚类中心点。同时,通过为K-means算法的终止条件设定标准值,来减少算法迭代次数,以减少学习时间;通过删除由信息动态变化而产生的冗余信息,来减少动态聚类过程中的干扰,从而使算法达到更准确更高效的聚类效果。上述措施使得该文本特征选择方法能够在文献语料库中更加准确地找到特征词,较之以前的方法有很大提升,尤其是在科技文献方面更为适用。实验结果表明,当数据量较大时,该方法结合改进后的K-means算法在科技文献分类方面有较高的性能。 相似文献
19.
传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means算法的局部性和对初始聚类中心的敏感性。 相似文献
20.
针对软件可靠性选择主要依靠人的主观经验进行判断、缺乏客观性和准确性的问题,提出了一种基于改进的K-means聚类和粒子群优化(PSO)算法的软件可靠性模型选择方法。该方法采用多评价标准编码,选定一种新的规则化距离作为元素间的相似性度量,应用K-means聚类和PSO分析实现了软件可靠性模型的选择。实验结果验证了该方法的有效性,为软件可靠性模型选择提供了一条新途径。 相似文献