共查询到19条相似文献,搜索用时 62 毫秒
1.
在外包空间数据库模式下,数据持有者委托第三方数据发布者代替它来管理数据并且执行查询.当发布者受到攻击或者由于自身的不安全性,它可能返回不正确的查询结果给用户.基于已有的反向k近邻(ReversekNearest Neighbor,RkNN)查询方法,采用将反向k近邻查询验证转化成k近邻查询验证和范围查询验证的思想,提出一种反向k近邻查询验证的方法,并且设计了相应的算法,用于验证返回给客户端结果的正确性(没有结果点被篡改),有效性(结果点都满足用户的查询要求)和完整性(没有遗漏符合查询要求的结果点).实验验证了算法的有效性和实用性. 相似文献
2.
目前,路网中反向最近邻查询引起了广泛关注,有很多算法被提出.在实际路网中,由于移动数据对象的种类多种多样,单色反向最近邻查询有时并不能完全满足要求.因此,研究路网双色反向最近邻查询具有重要的实际意义.考虑到这种情况,提出一种路网中双色反向最近邻查询算法.通过PMR四叉树索引路网,采用Dijkstra算法遍历路网.为了保证连续监控,为查询点和对象分别设置安全区.为了验证候选对象,为其设置验证监控区.由于双色查询中,对象的种类不同,因此分别采用两个集合来保存这两类对象.通过实验对比,证明该算法具有较好的有效性和稳定性. 相似文献
3.
K近邻查询是空间数据库中的重要查询之一,k近邻查询在内容的相似性检索、模式识别、地理信息系统中有重要应用。针对现有k近邻查询都是基于点查询的情况,提出基于平面线段的k近邻查询,查找线段集中给定查询点的k个最近线段。给出基于Voronoi图的线段k近邻查询算法及给出相关定理和证明。该算法通过线段Voronoi图的邻接特性找到一个候选集,然后从中找到最终结果。通过随机数据的实验证明,所提算法明显优于线性扫描算法和基于R树的k近邻查询算法。 相似文献
4.
针对传统的基于欧氏距离的相似性度量不能完全反映复杂结构的数据分布特性的问题,提出了一种基于相对密度和流形上k近邻的聚类算法。基于能描述全局一致性信息的流形距离,及可体现局部相似性和紧密度的k近邻概念,通过流形上k近邻相似度度量数据对象间的相似性,采用k近邻的相对紧密度发现不同密度下的类簇,设计近邻点对约束规则搜寻k近邻点对构成的近邻链,归类数据对象及识别离群点。与标准k-means算法、流形距离改进的k-means算法进行了性能比较,在人工数据集和UCI数据集上的仿真实验结果均表明,该算法能有效地处理复杂结构的数据聚类问题,且聚类效果更好。 相似文献
5.
当前时空数据库中的关键字查询大多数都是简单的传统查询。随着基于位置服务(LBS)的进一步发展,新类型的应用也随之出现,这些新的应用中的对象不仅包含位置信息,还包含和位置相关的文本信息,例如名字、类型等等,传统查询不再适用。为了能够高效地处理时空查询,提出一种新颖的时空关键字查询类型,称为反最近关键字聚集查询。 相似文献
6.
路网中互近邻查询处理方法 总被引:1,自引:0,他引:1
提出路网中的互近邻查询问题.给定路网G(V,E),对象集P,查询点q,近邻数k1和k2,互近邻查询返回既是q的k1近邻,又是q的反k2近邻的对象集.为解决该问题,首先提出基础算法,即先求出查询点q的k1近邻作为候选,再验证这些候选是否为真正的结果.然后,在此基础上提出了优化算法,根据落在对象点与查询点最短路径边上的标记点个数直接排除掉一些错误的候选对象.最后,通过实验验证了优化算法的有效性. 相似文献
7.
连续k近邻查询(continuous k-nearest neighor,Ck NN)定义为查找指定路径上每个点的k个最小代价数据对象。目前关于Ck NN的研究都是在欧式空间与静态路网中实现的,这些算法不能直接应用到边权值变化的时间依赖路网中。定义并解决了时间依赖路网中的Ck NN问题,利用积分的性质以及通过对权值代价函数合并的方式提出了两阶段的基于分割点的Ck NN查询算法。过滤阶段提出了计算节点到达时间的方法,再利用到达时间查询出多个候选k近邻结果;求精阶段将查询点到候选结果的权值函数合并,通过计算函数交点得到分割点,进而为查询返回若干个分割点以及相应区间内的k近邻结果。实验结果表明,与进行多次快照k近邻查询相比,所提算法在响应时间上减少了近一个数量级。 相似文献
8.
传统的路网上的反最远邻查询是直接找出查询点的反最远邻,这种方法不但效率不高,而且需要大量内存资源进行预计算。为了更有效地解决基于路网的单色和双色反k最远邻查询问题,提高反k最远邻查询的效率,提出了从反最近邻的角度来分析反最远邻查询问题,把反最远邻查询转化为反最近邻问题。根据这一理论,提出了一种有效的基于路网的单色和双色的反k最远邻查询算法。通过实验与实验分析表明,该方法具有良好的实用价值。 相似文献
9.
通过相似度支持度优化基于K近邻的协同过滤算法 总被引:19,自引:0,他引:19
个性化推荐系统能基于用户个人兴趣为用户提供定制信息.此类系统通常使用协同过滤技术实现,其中一种广泛使用的经典模型是基于用户评分相似度的k近邻模型.使用k近邻模型需要预先计算出用户或者项目的k个最近邻居,k值过大时会导致计算量过大而影响推荐产生的实时性,而k值过小则会导致推荐精度下降.为解决此问题,该文中提出了一种新的最近邻度量--相似度支持度.基于相似度支持度,该文提出了数种能够在保持推荐精度和密度的前提下维持合理规模的k近邻的策略.在真实大规模数据集上的实验结果表明,相比传统算法,该文提出的策略能够在保证推荐精度的前提下大幅降低计算复杂度. 相似文献
10.
针对基于道路网络的多用户连续k近邻查询处理,提出了一种可伸缩的多用户连续查询处理(scalable processing of multiple continuous queries,SPMCQ)框架.SPMCQ框架采用流水线处理策略,将连续k近邻查询执行分解为可同时作业的预处理、查询执行和结果分发3个阶段,利用多线程技术提高查询处理的并行性.基于SPMCO框架,分别利用基于内存的哈希表和线性链表结构对移动对象位置和道路网络有向图模型进行存储和管理,提出了多连续k近邻查询处理SCkNN算法.实验结果表明,在处理多用户连续k近邻查询时,该算法性能优于目前的道路网络连续k近邻查询处理算法. 相似文献
11.
最近邻查询是地理信息系统领域经常遇到的问题,而反最近邻查询是在最近邻查询的基础上提出的一种新的查询类型。在分析利用Voronoi图进行最近邻查询的基础上,提出了基于Voronoi图及其对偶图Delaunay图的反最近邻查询,大大缩小了在海量空间数据库中进行反最近邻查询的查询范围。 相似文献
12.
13.
空间数据库中反最近邻查询的研究是空间查询的研究热点。在对现有的反最近邻查询技术进行分析比较的基础上,针对提高动态数据集的查询效率问题,给出了基于R树索引结构的反最近邻查询方案。通过实验结果的分析比较,可以看出该方案能够有效地解决动态数据集的查询问题。 相似文献
14.
反向K最近邻查询需要确定以给定查询对象作为其k个最近邻之一的所有对象。然而由于大量应用需要处理未知数据,人们迫切需要能够处理未知对象的新算法。这里的主要问题是,一个对象属于RKNN结果集的事件不再是一个确定性事件,而是一个以一定概率成立的随机变量。对基于概率论的未知数据集反向K最近邻(PRKNN)搜索问题展开研究,以足够大的概率返回以查询对象为其最近邻的未知对象。基于一种新的考虑了距离相关性的修剪机制,提出一种PRNN高效查询算法。此外,还给出了如何将该算法扩展至PRKNN(其中k>1)查询处理。最后,将该算法与当前其他最新算法作比较,实验评估结果表明,该算法性能明显优于其他算法。 相似文献
15.
反向最近邻查询是空间数据库中最重要的算法之一。传统的反向最近邻查询方法主要是针对静态对象的查询,随着无线通讯和定位技术的快速发展,移动对象发出的查询请求成为新的研究热点。该文将TPR-tree作为算法的索引结构,并提出了基于矩形框的对角线的修剪策略,将半平面修剪策略进行改进,给出了移动对象的动态反向k最近邻的查询方案。 相似文献
16.
针对社交网络中近邻位置查询时个人位置隐私泄漏的问题,采用地理不可区分性机制对位置数据添加随机噪声,提出了一种隐私预算分配方法。首先,对空间区域进行网格化分割,根据用户在不同区域的位置访问量来个性化分配隐私预算;然后,为了解决在扰动位置数据集中近邻查询命中率偏低的问题,提出了一种组合增量近邻查询(CINQ)算法,以扩大需求空间的检索范围,并利用组合查询过滤冗余数据。在仿真实验中,与SpaceTwist算法相比,CINQ算法的查询命中率提高了13.7个百分点。实验结果表明,CINQ算法有效解决了因为查询目标的位置扰动所带来的查询命中率偏低问题,适用于社交网络应用中扰动位置的近邻查询。 相似文献
17.
传统谱聚类算法经常在处理一些结构复杂的数据集时效果不太理想,并且其相似度矩阵构造时参数的选取往往需要依靠多次实验及个人经验。在这种情况下,提出一种基于自然最近邻相似图的谱聚类(NSG-SC)算法。自然最近邻是一种新颖的最近邻概念,可以有效地避免K最近邻以及ε-最近邻方法需要人为设置参数的缺点。该算法构造相似度矩阵时依靠数据集自身的特性进行搜索,避免了参数选取不当以及离散点所带来的影响,更加真实地反映了数据集的结构关系。实验结果表明,提出的NSG-SC算法具有可行性和有效性。 相似文献
18.
19.
通过分析已有的索引结构在进行k近邻查询时效率上的不足,提出了适合进行k近邻查询的X*树索引结构,采用了新的结点分裂算法,同时不需要额外存储结点分裂的历史信息。实验结果表明它比X树的时间和空间性能更好,更适合k近邻查询的应用。 相似文献