共查询到20条相似文献,搜索用时 62 毫秒
1.
提出一种新的带有混合变异算子的自适应粒子群优化算法.该算法使用了动态自适应惯性权重,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性.在每次迭代过程中,对符合变异条件的粒子进行混合变异.通过对六个典型的测试函数的试验,表明该方法具有较强的全局寻优能力,克服了基本PSO易陷入早熟收敛的现象,并进一步提高了计算精度. 相似文献
2.
分析了含维变异算子的粒子群优化算法全局搜索能力与收敛速度的矛盾,提出了动态惯性权重向量和维变异的改进粒子群优化算法。算法首先定义了维多样性的概念,根据维多样性的情况动态地调整惯性权重向量,并对维多样性最差的维进行变异。4个典型测试函数的仿真实验说明该算法具有更强的全局搜索能力和更快的收敛速度。 相似文献
3.
4.
粒子群优化算法中惯性权重的研究进展 总被引:6,自引:1,他引:6
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法。惯性权重是粒子群算法中非常重要的参数,可以用来控制算法的开发和探索能力。简单介绍了标准粒子群优化算法的基本原理,全面综述了现有文献中对惯性权重的研究进展情况。 相似文献
5.
惯性权重是粒子群算法中平衡全局搜索和局部搜索能力的重要参数,提出了一种基于改进惯性权重的粒子群优化算法。该算法在进化初期采用基于不同粒子不同维的动态自适应惯性权重策略,加快收敛速度,在进化后期采用线性递减权重策略,同时为防止陷入局优,适时引入混沌变异增加种群多样性。对5个典型测试函数的测试结果表明,NPSO在收敛速度、收敛精度、稳定性和全局搜索能力等方面比线性权重PSO(LDIWPSO)均有很大程度上的提高。 相似文献
6.
7.
提出了一种新的带有变异算子的自适应粒子群优化算法,该算法使用了一种新的自适应惯性权重,使得算法在迭代的早期快速进人局部搜索,并且根据群体的适应度方差和平均聚集距离来判断算法在迭代的后期是否陷入局部最优点陷阱,对群体中的部分粒子采用新构造的变异运算作用,从而摆脱局部搜索的束缚,以实现全局搜索的性能。通过对六个例子的测试,表明这种改进的PSO算法的全局搜索能力和搜索成功率有较大提高。 相似文献
8.
提出了一种双重变异自适应粒子群优化算法,该算法除了使用自适应算子来改变惯性权重外,还在搜索过程中使用非均匀变异算子对位移进行变异,扩大位移的搜索范围.当算法陷入局部收敛时,使用柯西变异算子对全局最优解进行变异,促使粒子逃离局部最优的陷阱,从而最大限度的提升算法全局搜索的性能.通过对4个标准函数的测试,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟收敛的陷阱. 相似文献
9.
10.
针对粒子群优化算法中典型线性递减策略的惯性权重不能和运算过程中非线性变化的特点相匹配的问题,提出一种用典型线性递减策略和动态变化策略相结合的方法来确定惯性权重的粒子群优化算法(L-DPSO)。该算法充分利用了线性递减策略的线性和动态变化策略的非线性特点,对两种策略赋予了相应的权重。然后将L-DPSO算法和单独使用典型线性递减策略来确定惯性权重的粒子群优化算法(LPSO)及单独使用动态变化策略来确定惯性权重的粒子群优化算法(DPSO)进行比较,用Griewank和Rastrigin函数进行测试,结果表明,适当调整典型线性递减策略和动态变化策略的权重,L-DPSO算法的收敛速度明显优于LPSO和DPSO算法,收敛精度也有所提高。最后,对L-DPSO算法和几种常用的惯性权重计算方法确定的粒子群优化算法作比较,用Griewank和Rastrigin函数进行测试,结果表明L-DPSO算法也有明显优势。 相似文献
11.
12.
13.
针对微粒群优化算法的早熟收敛和进化后期收敛速度慢等问题,提出了一种改进惯性权重的变异微粒群优化算法.在算法运行过程中,对适应度值不同的微粒赋予不同的惯性权重,使算法既具有良好的空间探索能力又有良好的局部挖掘能力;在群体最优信息陷入停滞时引入变异算子,对聚集在局部最优微粒附近的微粒的位置和速度进行变异操作,使算法摆脱局部最优点的束缚.对4种典型函数的测试结果表明,新算法的全局搜索能力和收敛速度都得到了提高,并且能够有效避免早熟收敛问题. 相似文献
14.
一种改进的自适应惯性权重粒子群优化算法 总被引:3,自引:0,他引:3
研究粒子群算法优化问题,针对基本粒子群算法早熟收敛,易收敛于局部极值的缺点,提出了一种改进的粒子群算法,采用对全局最优微扰和调整惯性权重的方法,改善算法的优化速度和收敛精度.利用个体寻优能力来定义惯性权重,并且将其控制在0.9-0.4范围内,从而合理地调整全局探索能力和局部开发能力.在每次迭代时对当前全局最优粒子进行微扰,改变它的位置,避免它陷入局部最优.经过对一系列测试函数的计算和比较,证明改进方法无论收敛速度、搜索精度及稳定性均有显著改善. 相似文献
15.
16.
针对高维优化问题,随机初始化的粒子群算法中不同维的收敛情况不同,常用惯性权重不能很好地平衡全局搜索和局部搜索,且算法也易陷入局部最优。本文提出一种基于惯性权重维正弦调整和t分布维变异的粒子群优化算法,兼顾各维的收敛情况,较好地保持了种群的多样性。通过4个典型函数的测试,结果表明改进算法提高了收敛速度和精度。 相似文献
17.
在各类优化问题的解决过程中,群智能优化算法的局部搜索与全局搜索性能都起着重要的作用。在粒子群优化算法中,惯性权值的引入对粒子群算法的收敛性与稳定性都具有一定的影响。因此,在分析现有权值递减策略的基础上,提出一种基于单个粒子适应值的权值修正策略,区别对待同次迭代中适应值好与差的粒子,通过不同的权值赋值策略,以充分发挥各粒子的优势,以增强全局搜索和跳出局部最优的能力。通过对标准测试函数所做的对比实验,该策略可以使粒子在搜索初期获得更好的多样性,使粒子具有更强的摆脱陷入局部极值点的能力;在搜索末期可以加快粒子收敛速度以提高粒子群优化算法的快速性能。改进算法有效减少了早熟的发生,提高了粒子的收敛性能,取得了比较满意的仿真结果。 相似文献
18.
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖于参数的选取等缺点,提出了一种非线性指数惯性权重粒子群优化算法(Exponential Inertia Weight in Particle Swarm Optimization,EIW-PSO)。在每次迭代的过程中, 采用粒子最大适应值和最小适应值的指数函数来动态调整 算法中的惯性权重,更有利于算法在寻优过程中跳出局部最优;同时,引入随机因子以确保种群的多样性,使粒子更快地收敛到全局最优位置。为了验证该算法的寻优性能,通过8个基准测试函数将标准PSO、线性递减惯性权重LDIW-PSO、均值自适应惯性权重MAW-PSO在不同维度和种群规模下进行测试比较。实验结果表明,提出的EIW-PSO算法具有更快的收敛速度和更高的求解精度。 相似文献
19.
20.
粒子群算法针对速度变量的调节不够精确,算法在迭代过程中容易陷入局部最优,函数目标值的精度比较低。为了得到更加精准的目标值,提出一种改进的粒子群算法,对粒子群算法的惯性权值参数进行动态调整。算法将惯性权值参数设置为由粒子位置、个体最优位置和全局最优位置影响的可变参数组,通过各个位置之间的距离来控制参数的改变。该改进粒子群算法针对每一个粒子的每一维度都设计其对应的惯性权值参数。该改进算法经过和其它算法进行比较测试,结果显示改进的算法得到的解值更加精准。 相似文献