首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
近年来,计算机视觉领域随着深度学习的发展取得了长足进步,而该领域中卷积神经网络发挥了重要作用。计算机视觉领域的发展与物品识别检测、视频监控分析等息息相关,在日常生活和生产中具有重要作用。作为其最基本的算法之一,图像语义分割更是关键所在,只有保证图像语义分割,才能使后续算法正常执行分类或者识别命令。基于此,探讨了卷积神经网络在计算机视觉领域尤其是图像分割方面的应用,以提升图像分割算法的效率及效果。  相似文献   

3.
医学图像语义分割是计算机视觉和医疗领域的重要研究方向。基于全卷积神经网络的医学图像分割已经取得了显著进展,并在健康监测、疾病诊断和治疗方面得到广泛应用。文章总结了该领域的主要数据集和评价指标,回顾了现有的研究方法,尤其对于有突出贡献和技术引领的模型进行了详细介绍,并指出了现存的挑战和一系列有前景的研究方向。  相似文献   

4.
在临床医学影像诊断中,仅靠医生个人经验和传统技术手段难以精准识别医学图像结果,而依托计算机技术对医学图像处理,不仅能提高医生对医学图像的诊断效率,而且能减少医生的主观性判断,有利于提升医学诊断质量。在计算机领域卷积神经网络(Convolutional Neural Network,CNN)对图像分析具有显著优势。基于此,文章分析深度卷积神经网络在医学图像分割中的应用。  相似文献   

5.
图像语义分割是计算机视觉领域的热点研究课题,随着全卷积神经网络的迅速兴起,图像语义分割和全卷积神经网络的融合发展取得了非常卓越的成绩.通过对近年来高质量文献的收集,重点对全卷积神经网络图像语义分割方法进行总结.将收集的文献,按照应用场景的不同,划分为经典语义分割、实时性语义分割和RGBD语义分割,对具有代表性的分割方法...  相似文献   

6.
该文提出了一种基于深度学习框架的图像语义分割方法,通过使用由相对深度点对标注训练的网络模型,实现了基于彩色图像的深度图像预测,并将其与原彩色图像共同输入到包含带孔卷积的全卷积神经网络中。考虑到彩色图像与深度图像作为物体不同的属性表征,在特征图上用合并连接操 作而非传统的相加操作对其进行融合,为后续卷积层提供特征图输入时保持了两种表征的差异。在两个数据集上的实验结果表明,该法可以有效提升语义分割的性能。  相似文献   

7.
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union)。最后,指出了图像语义分割领域未来可能的热点方向。  相似文献   

8.
9.
针对现有的图像语义分割算法存在的因细节信息丢失导致分割效果不佳的问题,论文提出一种基于DeepLabV3+的改进算法。论文的深度学习网络分为编码器和解码器模块,在编码器模块使用改进的ResNet_101和空洞空间金字塔池化结构提取多尺度特征,在解码器模块结合多个输出,并且融合图像低层信息,解决目标细节丢失问题。为验证论文算法的有效性,在PASCAL VOC 2012数据集上进行实验,结果表明,改进后的算法在物体细节处理方面得到了良好效果,性能方面有所提升。  相似文献   

10.
显微细胞分割的精度直接影响疾病的判别诊断,特别在宫颈细胞的显微病理图像中,细胞核的形态大小、与细胞质之间的比例参数等对于病情的良恶诊断具有重大的意义。为提高宫颈细胞核质分割的精度,提出一种基于卷积神经网络的医学宫颈细胞图像的语义分割方法。标定宫颈细胞显微图像中的细胞核和细胞质轮廓,制作基于长沙市第二人民医院的基于新柏氏液基细胞学检测TCT(Thinprep cytologic test)制片技术的宫颈TCT细胞涂片的CCTCT数据集;通过卷积神经网络对核质分割模型进行训练,避免人工提取特征;通过反卷积达到图像的语义分割。实验结果表明,该算法在宫颈细胞的显微病理图像中的核质分割准确率高达94.7%,具有很高的鲁棒性和适应性。  相似文献   

11.
目的 由于舌体与周围组织颜色相似,轮廓模糊,传统的分割方法难以精准分割舌体,为此提出一种基于两阶段卷积神经网络的舌体分割方法。方法 首先,在粗分割阶段,将卷积层和全连接层相结合构建网络Rsnet,采用区域建议策略得到舌体候选框,从候选框中进一步确定舌体,从而实现对舌体的定位,去除大量的干扰信息;然后,在精分割阶段,将卷积层与反卷积层相结合构建网络Fsnet,对粗分割舌象中的每一个像素点进行分类进而实现精分割;最后,采用形态学相关算法对精分割后的舌体图像进行后续处理,进一步消除噪点和边缘粗糙点。结果 本文构建了包含2 764张舌象的数据集,在该数据集上进行五折交叉实验。实验结果表明,本文算法能够取得较为理想的分割结果且具有较快的处理速度。选取了精确度、召回率及F值作为评价标准,与3种常用的传统分割方法相比,在综合指标F值上分别提高了0.58、0.34、0.12,效率上至少提高6倍,与同样基于深度学习思想的MNC(multi-task network cascades)算法相比,在F值上提高0.17,效率上提高1.9倍。结论 将基于深度学习的方法应用到舌体分割中,有利于实现舌象的准确、鲁棒、快速分割。在分割之前,先对舌体进行定位,有助于进一步减少分割中的错分与漏分。实验结果表明,本文算法有效提升了舌体分割的准确性,能够为后续的舌象自动识别和分析奠定坚实的基础。  相似文献   

12.
针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割结果。由于单纯进行反卷积得到的分割结果往往比较粗糙,因此,在反卷积之前,先融合高层与低层的特征,并且通过增加反卷积的层数、减少反卷积步长,得到了更为精确的分割结果。与传统卷积神经网络的分割方法相比,该模型可以充分利用CT影像的空间信息。实验数据表明该模型能够使腹部CT影像肝脏分割具有较高的精度。  相似文献   

13.
目的 针对反恐、安防领域利用监控视频进行步态识别时由光照、拍摄角度、遮挡等多协变量引起的轮廓缺失、人体阴影和运算时间等问题,提出了一种基于RPGNet(Regin of Interest+Parts of Body Semantics+GaitNet)网络的步态人体语义分割方法。方法 该方法按照功能划分为R(region of interest)模块、P(parts of body semantics)模块和GNet(GaitNet)模块。R模块提取人体步态感兴趣区域,起到提升算法效率和图像去噪的作用。P模块借助LabelMe开源图像注释工具进行步态人体部位语义标注。GNet模块进行步态人体部位语义训练与分割。借鉴ResNet和RefineNet网络模型,设计了一种细节性步态语义分割网络模型。结果 对步态数据库1 380张图片进行了测试,RPGNet方法与6种人体轮廓分割方法进行了对比实验,实验结果表明RPGNet方法对细节和全局信息处理得都很精确,在0°、45°和90°视角都表现出较高的分割正确率。在多人、戴帽和遮挡条件下,实验结果表明RPGNet方法人体分割效果良好,能够满足步态识别过程中的实时性要求。结论 实验结果表明,RPGNet步态人体语义分割方法在多协变量情况下能够有效进行步态人体语义分割,同时也有效提高了步态识别的识别率。  相似文献   

14.
在无人驾驶技术中,道路场景的理解是一个非常重要的环境感知任务,也是一个很具有挑战性的课题。提出了一个深层的道路场景分割网络(Road Scene Segmentation Network,RSSNet),该网络为32层的全卷积神经网络,由卷积编码网络和反卷积解码网络组成。网络中采用批正则化层防止了深度网络在训练中容易出现的“梯度消失”问题;在激活层中采用了Maxout激活函数,进一步缓解了梯度消失,避免网络陷入饱和模式以及出现神经元死亡现象;同时在网络中适当使用Dropout操作,防止了模型出现过拟合现象;编码网络存储了特征图的最大池化索引并在解码网络中使用它们,保留了重要的边缘信息。实验证明,该网络能够大大提高训练效率和分割精度,有效识别道路场景图像中各像素的类别并对目标进行平滑分割,为无人驾驶汽车提供有价值的道路环境信息。  相似文献   

15.
目的 在图像语义分割中,细节特征和语义特征的融合是该领域的一个难点。一些在特定网络架构下设计的专用融合模块缺乏可扩展性和普适性,自注意力虽然可以实现全局的信息捕获,但不能实现不同特征的融合,其他的注意力机制在进行掩码计算时缺少可解释性。本文根据特征图之间的关联度进行建模,提出一种互注意力机制驱动的分割模块。方法 该模块获取不同阶段的细节特征图和语义特征图,建立细节特征图上任一点和语义特征图之间的关联模型,并在关联模型的指导下对语义特征图上的特征进行聚合,作为细节特征图上该特征点的补充,从而将语义特征图上的信息融合到细节特征图上,并进一步采用相同的操作将细节特征图上的信息融合到语义特征图上,实现来自不同阶段特征图的相互融合。结果 选取5个语义分割模型进行实验,实验结果表明,在使用替换方式对BiSeNet V2(bilateral segmentation network)进行修改之后,浮点运算量、内存占用量和模型参数数量分别下降了8.6%,8.5%和2.6%,但是平均交并比却得到了提升。在使用插入方式对另外4个网络进行修改后,所有网络的平均交并比全部得到了不同程度的提高。结论 本文提出的互注意力模块可普遍提升模型的语义分割准确度,实现不同网络模型的即插即用,具有较高的普适性。  相似文献   

16.
为提高虫情图像的分割和计数的准确率,提出了一种基于卷积神经网络的虫情图像分割和计数方法。该方法基于U-Net模型构造了一种昆虫图像分割的模型Insect-Net,将完整的虫情图像和切割后的虫情图像分别输入模型后,提取两者特征进行融合。将融合后的特征输入1个1×1的卷积层得到最终分割结果,再将得到的结果二值化后,采用轮廓检测算法将昆虫目标与背景分离并计数。实验结果表明,该方法在虫情图像中取得了较高的分割正确率和计数正确率,分别为94.4%和89.2%。用深度学习和卷积神经网络的方法有效提高了虫情图像的计数精度,并且为昆虫识别分类提供了大量的无背景数据集。  相似文献   

17.
18.
目的 合成孔径雷达图像目标识别可以有效提高合成孔径雷达数据的利用效率。针对合成孔径雷达图像目标识别滤波处理耗时长、识别精度不高的问题,本文提出一种卷积神经网络模型应用于合成孔径雷达图像目标识别。方法 首先,针对合成孔径雷达图像特点设计特征提取部分的网络结构;其次,代价函数中引入L2范数提高模型的抗噪性能和泛化性;再次,全连接层使用Dropout减小网络的运算量并提高泛化性;最后研究了滤波对于网络模型的收敛速度和准确率的影响。结果 实验使用美国运动和静止目标获取与识别数据库,10类目标识别的实验结果表明改进后的卷积神经网络整体识别率(包含变体)由93.76%提升至98.10%。通过设置4组对比实验说明网络结构的改进和优化的有效性。卷积神经网络噪声抑制实验验证了卷积神经网络的特征提取过程对于SAR图像相干斑噪声有抑制作用,可以省去耗时的滤波处理。结论 本文提出的卷积神经网络模型提高了网络的准确率、泛化性,无需耗时的滤波处理,是一种合成孔径雷达图像目标识别的有效方法。  相似文献   

19.
腹部动脉血管分割对于胃癌淋巴结的转移和肝动脉变异类型的判断至关重要。针对腹部动脉血管分割精度低、易断裂等问题,提出一种改进卷积网络架构的腹部动脉分割方法。卷积网络的编码部分使用带有卷积注意的预训练模块(resnet34),避免了梯度消失且可更好地获取图像的特征信息。为了扩大感受野和聚集多尺度特征信息,提出了一种新的多尺度特征融合模块。此外,动脉血管的边缘结构信息的学习至关重要,引入注意力导向滤波作为信息扩展路径,使输出特征更加结构化,提升血管分割的精度。所提方法在腹部动脉血管分割的实验结果表明,与基础网络U-Net相比,所提方法在灵敏度和交并比上分别提升了2.84%和1.19%。与CE-Net网络相比,在灵敏度和交并比上分别提升了1.34%和161%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号