共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
图像描述模型需要提取出图像中的特征,然后通过自然语言处理(NLP)技术将特征用语句表达出来。现有的基于卷积神经网络(CNN)和循环神经网络(RNN)搭建的图像描述模型在提取图像关键信息时精度不高且训练速度缓慢。针对这个问题,提出了一种基于卷积注意力机制和长短期记忆(LSTM)网络的图像描述生成模型。采用Inception-ResNet-V2作为特征提取网络,在注意力机制中引入全卷积操作替代传统的全连接操作,减少了模型参数的数量。将图像特征与文本特征有效融合后送入LSTM单元中完成训练,最终产生描述图像内容的语义信息。模型采用MSCOCO数据集进行训练,使用多种评价指标(BLEU-1、BLEU-4、METEOR、CIDEr等)对模型进行验证。实验结果表明,提出的模型能够对图像内容进行准确描述,在多种评价指标上均优于基于传统注意力机制的方法。 相似文献
3.
4.
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图... 相似文献
5.
6.
针对输入的图像视觉信息不能在每一步解码过程中动态调整,同时为了提高图像语义描述模型的精度和泛化能力,提出了一种结合引导解码和视觉注意力机制的双层长短时记忆(long short term memory,LSTM)网络的图像语义描述模型。将提取到的图像的视觉和目标特征通过一个引导网络建模后送入LSTM网络的每一时刻,实现端到端的训练过程;同时设计了基于图像通道特征的视觉注意力机制,提高了模型对图像细节部分的描述。利用MSCOCO和Flickr30k数据集对模型进行了训练和测试,结果显示模型性能在不同的评价指标上都得到了提升。 相似文献
7.
结合注意力机制的编解码框架模型已经被广泛地应用在图像描述任务中。大多数方法都强制对生成的每个单词进行主动的视觉注意,然而,解码器很可能不需要关注图像中的任何视觉信息就生成非视觉单词,比如“the”和“of”。本文提出一种自适应注意力模型,编码端采用Faster R-CNN网络提取图像中的显著特征,解码端LSTM网络中引入一个视觉监督信号。在每个时间步长,它可以自动地决定何时依赖于视觉信号,何时仅依赖于语言模型。最后在Flickr30K和MS-COCO数据集进行验证,实验结果表明该模型有效地提升了描述语句的质量。 相似文献
8.
图像描述是连接计算机视觉与自然语言处理两大人工智能领域内的一项重要任务.近几年来,基于注意力机制的编码器-解码器架构在图像描述领域内取得了显著的进展.然而,许多基于注意力机制的图像描述模型仅使用了单一的注意力机制.本文提出了一种基于双路细化注意力机制的图像描述模型,该模型同时使用了空间注意力机制与通道注意力机制,并且使用了细化图像特征的模块,对图像特征进行进一步细化处理,过滤掉图像中的冗余与不相关的特征.我们在MS COCO数据集上进行实验来验证本文模型的有效性,实验结果表明本文的基于双路细化注意力机制的图像描述模型与传统方法相比有显著的优越性. 相似文献
9.
针对图像描述生成中对图像细节表述质量不高、图像特征利用不充分、循环神经网络层次单一等问题,提出基于多注意力、多尺度特征融合的图像描述生成算法。该算法使用经过预训练的目标检测网络来提取图像在卷积神经网络不同层上的特征,将图像特征分层输入多注意力结构中,依次将多注意力结构与多层循环神经网络相连,构造出多层次的图像描述生成网络模型。在多层循环神经网络中加入残差连接来提高网络性能,并且可以有效避免因为网络加深导致的网络退化问题。在MSCOCO测试集中,所提算法的BLEU-1和CIDEr得分分别可以达到0.804及1.167,明显优于基于单一注意力结构的自上而下图像描述生成算法;通过人工观察对比可知,所提算法生成的图像描述可以表现出更好的图像细节。 相似文献
10.
11.
针对图像语义描述方法中存在的图像特征信息提取不完全以及循环神经网络(RNN)产生的梯度消失问题,提出了一种基于多特征提取的图像语义描述算法.所构建模型由三个部分组成:卷积神经网络(CNN)用于图像特征提取,属性提取模型(ATT)用于图像属性提取,而双向长短时记忆(Bi-LSTM)网络用于单词预测.该模型通过提取图像属性... 相似文献
12.
不法分子利用洋葱路由器(Tor)匿名通信系统从事暗网犯罪活动,为社会治安带来了严峻挑战。Tor网站流量分析技术通过捕获分析Tor匿名网络流量,及时发现隐匿在互联网上的违法行为进行网络监管。基于此,提出一种基于自注意力机制和时空特征的Tor网站流量分析模型——SA-HST。首先,引入注意力机制为网络流量特征分配不同的权重以突出重要特征;然后,利用并联结构多通道的卷积神经网络(CNN)和长短期记忆(LSTM)网络提取输入数据的时空特征;最后,利用Softmax函数对数据进行分类。SA-HST在封闭世界场景下能取得97.14%的准确率,与基于累积量模型CUMUL和深度学习模型CNN相比,分别提高了8.74个百分点和7.84个百分点;在开放世界场景下,SA-HST的混淆矩阵各项评价指标均稳定在96%以上。实验结果表明,自注意力机制能在轻量级模型结构下实现特征的高效提取,SA-HST通过捕获匿名流量的重要特征和多视野时空特征用于分类,在模型分类准确率、训练效率、鲁棒性等多方面性能均有一定优势。 相似文献
13.
针对单一长短时记忆(LSTM)网络在航迹预测上无法有效提取关键信息以及难以精准拟合数据分布等问题,提出基于注意力机制和生成对抗网络(GAN)的飞行器短期轨迹预测模型。首先,引入注意力机制对航迹赋予不同的权重,以提升航迹中重要特征的影响力;其次,基于LSTM提取航迹序列特征,并经汇聚层汇集时间步长内所有的飞行器特征;最后,利用GAN在对抗博弈下不断优化的特性来优化模型,从而提高模型的准确性。相较于社会生成对抗网络(SGAN),所提模型在处于爬升阶段的数据集上的平均位移误差(ADE)、最终位移误差(FDE)及最大位移误差(MDE)分别降低了20.0%、20.4%和18.3%。实验结果表明,所提模型能更精确地预测未来航迹。 相似文献
14.
针对已有的航运监控图像识别模型C3D里中级表征学习能力有限,有效特征的提取容易受到噪声的干扰,且特征的提取忽视了整体特征与局部特征之间关系的问题,提出了一种新的基于注意力机制网络的航运监控图像识别模型。该模型基于卷积神经网络(CNN)框架,首先,通过特征提取器提取图像的浅层次特征;然后,基于CNN对不同区域激活特征的不同响应强度,生成注意力信息并实现对局部判别性特征的提取;最后,使用多分支的CNN结构融合局部判别性特征和图像全局纹理特征,从而利用局部判别性特征和图像全局纹理特征的交互关系提升CNN学习中级表征的能力。实验结果表明,所提出的模型在航运图像数据集上的识别准确率达到91.8%,相较于目前的C3D模型提高了7.2个百分点,相较于判别滤波器组卷积神经网络(DFL-CNN)模型提高了0.6个百分点。可见所提模型能够准确判断船舶的状态,可以有效应用于航运监控项目。 相似文献
15.
现有的单幅图像去雨算法难以充分发掘不同维度注意力机制的相互作用,因此提出一种基于联合注意力机制的单幅图像去雨算法。该算法包含通道注意力机制和空间注意力机制:通道注意力机制检测各通道雨线特征的分布,并差异化各个特征通道的重要程度;空间注意力机制则针对通道内雨线分布的空间关系,以局部到全局的方式积累上下文信息,从而高效准确地去雨。此外,引入深度残差收缩网络,以利用残差模块中嵌入的软阈值非线性变换子网络来通过软阈值函数将冗余信息置零,从而提升CNN在噪声中保留图像细节的能力。在公开降雨数据集与自构建的降雨数据集上进行实验,相较于单一空间注意力算法,联合注意力去雨算法的峰值信噪比(PSNR)提升4.5%,结构相似性(SSIM)提升0.3%。实验结果表明,所提算法可以有效地进行单幅图像去雨和图像细节的信息保留,在目视效果和定量指标上均优于对比算法。 相似文献
16.