共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
根据迁移学习思想,针对分类问题,以支持向量机(SVM)模型为基础提出一种新的迁移学习分类算法CCTSVM.该方法以邻域间的分类超平面为纽带实现源域对目标域的迁移学习.具体地,以支持向量分类的约束条件完成对目标域数据的学习,获取分类超平面参数,再以支持向量回归的约束条件有效利用源域数据矫正目标域超平面参数,并在上述组合约束的共同作用下实现邻域间迁移,提高分类器性能.在人工和真实数据集上的实验表明,所提出算法具有良好的迁移能力和优越的分类性能. 相似文献
3.
针对人脸识别在实际应用中存在姿态变化、表情、遮挡等问题,研究了结合支持向量机(SVM)分类的卷积神经网络(CNN)人脸识别算法,设计并实现了人脸识别系统.系统首先使用CNN提取人脸特征向量,再将特征向量通过SVM进行分类.测试结果表明,系统在训练样本充分时面对人脸姿态变化、表情、遮挡等情况下都具有较好的性能,识别率在9... 相似文献
4.
5.
6.
基于深度学习的鱼类分类算法研究 总被引:1,自引:0,他引:1
《计算机应用与软件》2018,(1)
回顾近年来国内外对鱼类分类的研究进展,指出传统方法存在的缺陷。深度学习是目前图像分类的主流方法。研究基于卷积神经网络CNN(Convolutional Neural Network)的鱼类分类模型,并以该模型为基础,进一步提出利用迁移学习,以预训练网络的特征结合SVM算法(Pre CNN+SVM)的混合分类模型。实验以Fish4-Knowledge(F4 K)作为数据集,使用Tensor Flow训练网络模型。实验结果表明,利用Pre CNN+SVM算法,取得了98.6%的准确率,较传统方法有显著提高。对于小规模数据集,有效解决了需要人工提取特征的不可迁移性。 相似文献
7.
TL-SVM:一种迁移学习新算法 总被引:2,自引:1,他引:1
迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题. 当与某领域相关的新领域出现时, 若重新标注新领域, 则样本代价昂贵, 丢弃所有旧领域数据又十分浪费. 对此, 基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM, 通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型, 该方法既继承了基于经验风险最小化最大间隔SVM的优点, 又弥补了传统SVM不能进行知识迁移的缺陷. 实验结果验证了该算法的有效性. 相似文献
8.
针对深层卷积神经网络检测表面结构裂纹耗费时间长、精度不够高的问题,基于Xception网络进行自适应调整重构其分类器,利用图像增广技术扩充数据集后,引入迁移学习的方法对Xception网络进行训练。同时,与构建的ResNet50、InceptionV3和VGG19三个深层卷积神经网络模型进行对比实验,重新验证其性能。实验证明,引入迁移学习不仅可以提升模型的整体性能,还能缩减训练深层卷积神经网络的时间,训练的模型在数据集上的识别精确率达到96.24%,在对比实验中达到96.50%。 相似文献
9.
10.
基于流形学习和SVM的Web文档分类算法 总被引:7,自引:4,他引:3
为解决Web文档分类问题,提出一种基于流形学习和SVM的Web文档分类算法。该算法利用流形学习算法LPP对训练集中的高维Web文档空间进行非线性降维,从中找出隐藏在高维观测数据中有意义的低维结构,在降维后的低维特征空间中利用乘性更新规则的优化SVM进行分类预测。实验结果表明该算法以较少的运行时间获得更高的分类准确率。 相似文献
11.
提出一种基于支持向量机的渐近式半监督式学习算法,它以少量的有标记数据来训练初始学习器,通过选择性取样规则和核参数来调节无标记样本的选择范围和控制学习器决策面的动态调节方向,并通过删除非支持向量来降低学习代价。仿真实验表明,只要能够选择适当的选择性取样的阈值和核参数,这种学习算法就能够以较少的学习代价获得较好的学习效果。 相似文献
12.
13.
14.
随着信息时代的到来,互联网平台上的文本数据开始爆发式增长,其中难免夹杂着一些不法数据.这些数据往往隐藏在海量数据中,因此给平台检索这些不法数据增加了难度.在这种情况下再用传统的文本分类方法已经不能满足需求了.因此论文根据文本数据的特点提出了基于主动学习的SVM评论内容分类方法,该方法使用主动学习的思想将敏感词向量、k-... 相似文献
15.
水下目标识别在鱼雷水下武器反对抗中占有重要的地位,模糊聚类与神经网络相结合,广泛应用在模式识别的各个领域;在FCM算法中,考虑到样本矢量中各维特征对目标分类的不同影响,提出一种基于特征加权的改进FCM算法,使数据更有效的分类;将改进的FCM算法与改进RBF神经网络结合起来建模,充分利用二者的优点,运用到水下目标识别的分类中,得到满意的结果,提高了鱼雷跟踪定位目标的可靠性。 相似文献
16.
17.
对等网络技术引起了广泛关注,其典型的应用有文件共享、即时通信等.为了更好地合理使用、规划P2P网络资源,建立P2P流量识别模型具有十分重要的理论意义和现实价值.提出了一种基于小波支持向量机相结合的P2P流量识别模型,将小波分析中多尺度的学习方法和SVM的优点结合起来,通过小波分析与SVM方法紧致结合,引入满足小波构架和Mercer定理的小波基函数来构造SVM的核函数,建立小波支持向量机的P2P识别算法.实验结果表明该算法能够有效地提高P2P网络流量识别的精度. 相似文献
18.
各大城市都存在过十字路口时车辆拥堵现象,为了解决这一问题,提出基于深度强化学习的一种解决算法.该算法针对于这一现象,构建了一种道路信号灯控制的强化学习模型.以单交叉口为仿真参考对象进行仿真,仿真结果表明,上述算法更有利于十字路口的吞吐量,进一步减少路口车辆等待时间,达到了合理调控道路信号灯时间、缓解路口拥堵的目标. 相似文献
19.
使用脉冲序列进行数据处理的脉冲神经网络具有优异的低功耗特性,但由于学习算法不成熟,多层网络训练存在收敛困难的问题。利用反向传播网络具有学习算法成熟和训练速度快的特点,设计一种迁移学习算法。基于反向传播网络完成训练过程,并通过脉冲编码规则和自适应的权值映射关系,将训练结果迁移至脉冲神经网络。实验结果表明,在多层脉冲神经网络中,迁移学习算法能够有效解决训练过程中收敛困难的问题,在MNIST数据集和CIFAR-10数据集上的识别准确率分别达到98.56%和56.00%,且具有微瓦级别的低功耗特性。 相似文献