共查询到19条相似文献,搜索用时 76 毫秒
1.
针对目前主流的目标检测算法检测效率不高以及小目标检测困难的问题,提出一种改进的SSD(Sin-gle Shot MultiBox Detector)算法,并将其应用于道路环境车辆目标的检测.设计一个目标检测网络结构,对高层特征图不进行降采样,使用空洞卷积和深度可分离卷积层来提高模型性能,并使用K-means算法来对模型参数进行优化.在Udacity道路环境数据集上进行对比实验,结果表明,该算法对车辆目标检测的平均精准度达到了58.01%,检测速度达到了86.26帧每秒,相比原SSD算法有明显提升. 相似文献
2.
SSD(Single Shot MultiBox Detector)是一种基于深度学习的目标检测算法,它作为当前最为主流的检测算法之一,在极大地提高检测速度的同时,还能保证一定的检测精度,但是仍难以满足实际应用的需求。本文在SSD模型的基础上,引入注意力机制,提出一种基于SSD改进的目标检测算法。注意力机制能够有效地提高卷积神经网络对图片特征的提取能力,从而进一步提高算法的检测精度。改进后的算法在Pascal VOC数据集上进行对比试验。实验结果表明,改进后的模型在Pascal VOC2007测试集上的检测精度达到78.5% mAP(mean Average Precision),比改进前提高4.2个百分点,在Pascal VOC2012测试集上的检测精度达到77.1% mAP,比改进前提高4.7个百分点。 相似文献
3.
针对当前SSD算法低层特征图语义信息不足导致存在小目标漏检以及误检的问题,提出一种基于分段反卷积改进SSD的目标检测算法SD-SSD(Segmented Deconvolution-Single Shot MultiBox Detector).根据SSD模型低层特征图语义信息提取不足,高层特征图边缘信息丢失过多,本文重... 相似文献
4.
《计算机科学与探索》2019,(11):1881-1893
为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平台完成了以下一些工作:第一,对低层卷积层的特征图进行区域放大,保留更多的目标特征信息,再对高特征层进行特征提取;第二,在对重叠目标候选区域进行过滤的时候,基于非极大值抑制的方法和思想设置阈值消除冗余的目标候选区域,使得产生的负样本的数目减少,使模型效果逐步趋于稳定;第三,针对目标检测中的预测区域与真实区域在匹配过程中所产生的正负样本进行处理,用于保证模型的稳定性等。基于以上方法研究,使得模型对多目标识别的速度有所加快,鲁棒性更好,准确率更高,同时也适当降低了对硬件配置资源的需求。 相似文献
5.
目的 海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。为此,在标准的SSD(single shot multiBox detector)目标检测模型基础上,结合Xception深度可分卷积,提出一种轻量SSD模型用于海面目标检测。方法 在标准的SSD目标检测模型基础上,使用基于Xception网络的深度可分卷积特征提取网络替换VGG-16(Visual Geometry Group network-16)骨干网络,通过控制变量来对比不同网络的检测效果;在特征提取网络中的exit flow层和Conv1层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量SSD目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。结果 为证明本文模型的有效性,进行了多组对比实验。实验结果表明,模型轻量化导致特征表达能力降低,从而影响检测精度。相对于标准的SSD目标检测模型,本文模型在参数量降低16.26%、浮点运算量降低15.65%的情况下,浮标的平均检测精度提高了1.1%,漏检率减小了3%,平均精度均值(mean average precision,mAP)提高了0.51%,同时,保证了船的平均检测精度,并保证其漏检率不升高,在对数据集中的小目标进行测试时,本文模型也表现出较好的检测效果。结论 本文提出的海面小目标检测模型,能够在压缩模型的同时,保证模型的检测速度和检测精度,达到网络轻量化的效果,并且降低了小目标的漏检率,可以有效实现对海面小目标的检测。 相似文献
6.
针对目前目标检测技术中小目标检测困难问题,提出了一种基于SSD (Single Shot multibox Detector)改进的小目标检测算法Bi-SSD (Bi-directional Single Shot multibox Detector).该算法为SSD的浅层特征设计了小目标特征提升模块,在网络的分类和回归部分结合多尺度特征融合方法和BiFPN (Bi-directional Feature Pyramid Network)结构,设计了6尺度BiFPN分类回归子网络.实验结果表明,在PASCAL VOC和MS COCO目标检测数据集上Bi-SSD相比原始的SSD算法有更好的检测性能.其中VOC2007+2012上Bi-SSD算法的mAP指标达到了78.47%相较SSD算法提升了1.34%,在COCO2017上Bi-SSD算法的m AP达到26.4%提升了接近2.4%. 相似文献
7.
SSD(single shot multi-box detector)是目前广泛应用于行人检测的神经网络算法,为了提高其检测精度和检测速度,对SSD算法进行了有效改进(改进后的算法称为XSSD-P)。选择Xception网络作为XSSD-P算法的骨干网络并重新选择用于预测的特征层;根据行人外形尺寸的特征设计了多尺度卷积核和基础锚框,并将二者耦合,基础锚框通过调节自身大小得到锚框(anchors)用于位置回归;再使用深度可分离卷积代替常规卷积在特征图上进行预测,实现了行人的有效检测。在INRIA数据集、VOC数据集和COCO数据集上进行检测精度对比测试,与SSD以及其他主流算法相比,XSSD-P算法在行人检测方面拥有更高的检测精度,并在Caltech行人数据集和MIT行人数据集中验证了XSSD-P算法的泛化性能。在检测速度方面,与SSD算法相比,XSSD-P算法的检测速度高出30 FPS,提高了42.86%。实验结果表明,XSSD-P的检测精度和检测速度均优于SSD算法。 相似文献
8.
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv11_2的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 相似文献
9.
在道路场景中,因小目标分辨率低且特征不明显,传统的目标检测算法难以确认其所属类别和位置信息,导致检测精度低、检测速度慢、漏检率高。提出一种改进SSD的道路小目标检测算法RFG_SSD。在SSD网络结构的主干部分和检测部分之间,通过引入改进的特征金字塔网络结构,融合浅层和深层感受野的特征信息,以获得小目标语义信息丰富的特征图。将深层特征提取网络ResNet 50作为改进网络的主干特征提取网络,提高整体网络的检测精度。为加快网络运算速度,基于检测层结构,利用全局平均池化层代替全连接层,减少网络参数量。实验结果表明,与SSD、VGG16+SFPN等算法相比,该算法能够有效提高小目标检测性能,且加快检测速度,其在BDD100K数据集上的平均精度和检测速度分别为98.05%和85.56 frame/s,小目标检测个数相较于SSD算法提高3倍多。 相似文献
10.
针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之间的跳跃连接,结合SSD-VGG16扩展卷积特征图以提取多尺度特征,并对不同卷积层、尺度及特征的多元信息进行分类预测与位置回归。在织物瑕疵数据库上的实验结果表明,与SSD、DSSD等算法相比,该算法的检测性能较好,其检测精度达到78.2%,检测速度为51 frame/s,能在保证检测精度的同时提高检测速度。 相似文献
11.
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 相似文献
12.
为了实现养殖场环境下无接触、高精度的奶牛个体有效识别,针对SSD(single shot multibox detector)算法识别准确率不高的问题,提出一种基于浅层特征模块的改进SSD(shallow feature module SSD,SFM-SSD)算法。将原始SSD算法的主干网络由VGG16替换为MobileNetV2,以降低网络的运算量,改善检测的实时性;针对SSD网络结构的浅层特征图设计浅层特征模块,扩大浅层特征图的感受视野,提高浅层特征图对目标物体的特征提取能力;利用[K]均值聚类算法重构区域候选框,提高算法的检测精度。实验结果表明:在奶牛个体识别任务中,SFM-SSD算法的平均准确率比原始的SSD算法提升3.13个百分点。同时检测的实时性也得到改善。 相似文献
13.
14.
仪表检测是智能仪表测试不可或缺的环节,其效果直接决定仪表测试的准确率。针对仪表检测背景复杂且要求速度快的特点,提出一种基于改进YOLOv3的目标检测算法。基于YOLOv3算法,首先使用DenseNet(Densely Connected Convolutional Networks)替换Darknet中的最后2个网络块,以加强模型对特征的重用。然后采用轻量化的Darknet-46作为特征提取网络,并将DenseNet中的卷积神经网络修改为深度可分离卷积网络,再将所有检测层(YOLO Detection)之前的6层卷积修改为2层,以减少模型的参数。同时引入GDIOU(generalized-IOU and distance-IOU, GDIOU)边界框以回归坐标损失,并根据检测需求重新调整损失函数的权重。实验结果表明,相比原算法,改进的YOLOv3算法参数数量减少40%,在仪表检测中的精确率和召回率分别达到95.83%和94.98%,分别提高2.21个百分点和2.09个百分点,平均精度提高2.42个百分点,检测速度提高30.18%。 相似文献
15.
通过对原SSD(Single Shot Multibox Detector)模型的研究与分析,针对其对小目标检测能力较弱的问题,提出了一种基于密集模块与特征融合操作的改进模型。该模型以Inception-ResNet-V2与DenseNet为基础,吸取了inception模块中稀疏连接与密集网络中密集连接的研究思路,将两种方法融合在一起,提出了Inception-Dense特征提取结构。在多尺度检测的部分,借鉴并改进了特征金字塔的特征融合模块来加强对中小目标的检测能力。根据改进模型及实验数据集的相关特性,对默认框的映射机制也进行了重新设定。结果表明:该方法在Kitti数据集上的平均测试精确度(mAP)为83.8%;识别率相比于原SSD模型的72.8%,提升了11个百分点。FPS方面也有接近38%的提升,从原来的39提升到了54。 相似文献
16.
针对传统检测方法对于汽车差速器壳体表面小目标缺陷的误检和漏检问题,提出了一种改进的FSSD_MobileNet缺陷检测模型。该模型将FSSD(feature fusion single shot multibox detector)算法的基础骨干网络VGG16替换成轻量级MobileNet网络,构建了一种高效的特征融合结构并调整了默认框的尺寸,进一步提升对小目标缺陷的检测能力。同时使用RMSProp(root mean square propagate)梯度下降算法来优化损失函数,加快了模型的收敛速度。实验结果表明,改进后的FSSD_MobileNet模型的mAP为96.7%,相比于改进前提升了16.2个百分点。在保持较高检测精度的同时,检测速度达到了191 FPS,高于目前单阶段算法中速度较快的YOLOv5s网络,相较于传统的SSD(single shot multibox detector)和FSSD分别提升了94 FPS和102 FPS,同时模型较为精简,能够更好地满足实际生产中对准确性和实时性的综合要求。 相似文献
17.
针对生产线上运动过程中的零部件类型检测的实时性和准确度要求高,部分零件体积较小难以检测的问题,提出一种基于改进SSD(Single Shot MultiBox Detector)目标检测算法的零部件检测方法.使用轻量级网络MobileNetV3-Large替代SSD算法的主干网络VGG-16,图像输入长宽尺寸由300×... 相似文献
18.
针对目标检测算法SSD在交通应用中检测精度不高、对小尺度汽车和行人检测能力不足的问题,提出一种改进的SSD检测算法,将原SSD基础网络VGG-16替换成残差网络ResNet-50,来提高特征提取网络提取特征的能力并防止网络衰退.算法额外设计5层卷积层来简化原SSD网络结构,进行多尺度特征图的检测;将注意力机制CBAM融... 相似文献
19.
SSD算法利用多尺度特征图进行分类和位置回归,检测小目标效果优于YOLO算法,但SSD算法在进行车辆检测时存在漏检问题。为此,提出一种改进SSD算法。为提取更多的车辆特征信息,设计改进Inception模块替代SSD网络中的Conv8、Conv9和Conv10层。将浅层特征的位置信息和深层特征的语义信息进行均衡化融合,构建多尺度特征融合均衡化网络,提高小目标车辆识别率。在特征提取层均引入SENet,对不同特征通道的重要性进行重标定以提高模型性能。实验结果表明,改进后SSD算法在自制的车辆数据集上平均精度为90.89%,检测速度达到59.42 frame/s,相比改进前的SSD算法,在精度和速度上分别提高2.65个百分点和17.41 frame/s,能够更快速、准确地对图像中的车辆进行识别和定位。 相似文献