共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究传统目标检测算法在进行道路小目标检测时效果不佳及漏检率较高等问题,本文提出了一种基于改进YOLOv3的小目标检测方法.首先通过设计新的特征融合结构降低小目标漏检率,并且使用DIOU损失提高定位精确度.同时对YOLOv3算法中的聚类算法进行改进,采用K-means++算法改进聚类先验框中心点的提取,选取更为合适的Anchor Box,用于提高检测的平均精度和速度.在自制混合数据集上对行人及车辆进行对比检测,在不影响检测速度的情况下,改进的YOLOv3算法能够有效降低小目标物体漏检率,并且提高了检测精度.根据实验结果,本文所提出的改进YOLOv3模型在混合数据集上的平均精度达到92.82%,与未改进的YOLOv3算法相比提高了2.77%. 相似文献
2.
殷振晓 《电脑编程技巧与维护》2022,(3):56-58,82
使用传统视觉对绝缘子进行目标检测的方法效率偏低,稳定性也较差.针对这些问题对YOLOv3原始模型做出了两方面的改进:利用K-means++聚类算法产生用于训练的先验锚框,并且根据绝缘子数据集特性优化了损失函数模型,进而提出新的绝缘子目标检测方法.采用航拍绝缘子图像数据集进行仿真实验后得出,改进后的YOJOv3算法在保证... 相似文献
3.
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。 相似文献
4.
5.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚... 相似文献
6.
车辆行驶过程中, 对前方目标的检测速度和检测精度一直是自动驾驶领域研究的重点. 针对现有的目标检测算法模型, 在复杂交通环境下, 传统模型面对重叠目标容易导致误检和漏检的情况发生, 大幅度提高检测精度又会造成计算量过大导致处理速度缓慢, 实时性下降的问题. 本文提出基于YOLOv5模型的改进算法. 首先采用MobileNetV3网络替换原模型中主干网络C3的方案, 实现网络仍保持轻量化的同时, 提高模型响应速度. 其次, 提出一种非极大值抑制算法Adaptive-EIoU-NMS来提高重叠目标的识别精度. 最后采用K-means++聚类算法替换原有聚类算法, 生成更精确的锚框. 实验结果表明, 改进后的模型平均检测精度达到90.1%, 检测速度达到89 f/s. 实验结果可以证实, 改进后的模型针对复杂场景检测精度和检测速度都有显著提高. 相似文献
7.
8.
实时、精确地确定列车在轨道路径上的位置是保障行驶安全、提升运输效率、提供最佳服务的前提.为了解决传统绝对定位技术存在的一些不足,提出一种基于改进YOLOv3的轨道定位点检测方法.根据定位点目标大小,调整网络输入尺寸及其特征提取网络Darknet-53的结构;由于定位点样本数量稀缺,故采用旋转、增噪等手段进行样本扩充,并... 相似文献
9.
交通场景下的车辆检测问题存在小目标多、目标遮挡严重等情况,鉴于此,提出一种基于改进YOLOv3的车辆检测算法.由于小目标仅包含较少的像素,特征不明显,算法在空间金字塔结构中融入软池化操作,搭建Soft-SPP结构将多重感受野融合,通过软池化操作最大程度地保留细节,有效提取小目标特征;引入坐标注意力机制,在调整每个通道特征分配权重的同时能够捕捉具有精确位置信息的远程依赖关系;提出一种新的损失函数KIoU Loss作为边界框损失函数,同时考虑边界框的关键点与长宽比使之回归更加准确.实验结果表明,改进后的算法在自动驾驶KITTI数据集上平均精度达到94.69%,相比原始YOLOv3算法精度提升4.13%,且检测速度仅下降3.16 frame·s-1,在保持检测速度的情况下能够明显提升检测精度. 相似文献
10.
道路车辆实时检测是计算机视觉领域中的研究热点问题。针对道路车辆检测算法存在检测精度低、速度慢等问题,提出了一种基于改进YOLOv3的道路车辆目标检测方法。通过改进Darknet53骨架网络构建了有30个卷积层的卷积神经网络,在减少网络成本的同时提高了检测速度;根据道路车辆宽高比固定的特点,利用k-means聚类方法选取锚点预测边界框,提高了检测速度与精度。实验结果表明,提出的方法在标准数据集KITTI上的平均精度达到了90.08%,比传统的YOLOv3提高了0.47%,检测速度达到了76.04 f/s,明显优于传统的YOLOv3算法。同时将该方法应用于车辆行驶动态数据集,能够实现针对视频中道路车辆的实时检测。 相似文献
11.
基于改进YOLOv3算法的公路车道线检测方法 总被引:2,自引:0,他引:2
针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%, 检测速度可达50帧/s, 较YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法. 相似文献
12.
在计算机视觉的内窥胃部息肉检测中, 高效提取小型息肉图像特征是设计深度学习的计算机视觉模型一个难点. 针对该问题, 提出了一种YOLOv4改进的YOLOv4-polyp检测模型. 首先在YOLOv4的基础上, 引入CBAM卷积注意力模块增强模型在复杂环境的特征提取能力; 其次设计出轻量级CSPDarknet-49网络模型, 在降低模型复杂度的同时提高检测精度和检测速度; 最后根据胃息肉数据集的特点, 采用K-means++聚类算法对胃息肉数据集进行聚类分析, 得到优化后的锚框. 实验对比结果表明, YOLOv4-polyp对于经典YOLOv4模型在保持检测速率不变的同时, 在两个数据集中平均检测精度分别提升了5.21%和2.05%, 表现出良好的检测性能. 相似文献
13.
为了更准确地检测高速公路隧道内停车行为,提出一种基于改进YOLOv3车辆检测模型的高速公路隧道内停车检测方法。通过筛选VOC数据集以及实际高速公路隧道内的车辆图片制作专门用于高速公路隧道内车辆检测的数据集,选取YOLOv3目标检测模型作为车辆检测的基础网络结构,并对其进行加深网络结构的改进使其能够准确检测隧道内的车辆。将Deep SORT跟踪算法应用于改进的停车检测模型中,对车辆进行跟踪从而计算行驶速度,并创新性地设置双重速度阈值来判别车辆的停车行为。实验结果表明,经过改进的YOLOv3模型相比于原模型,在VOC-vehicle数据集和Tunnel-vehicle数据集上的mAP都有所提升,最终获得了mAP为98.19%的高速公路隧道车辆检测模型。将基于改进YOLOv3的高速公路隧道内停车检测方法在高速公路隧道视频上进行测试,可以有效地在高速公路隧道中完成停车检测的任务。 相似文献
14.
在复杂无约束自然场景下对车辆实时检测和相关信息的提取识别一直是计算机视觉领域内重要的研究内容之一。该领域问题的突破不但可以为汽车自动驾驶技术的实现和完善带来实际效果的提升,并且在停车场的自动停车调度算法和实时泊车监控系统的改进上有着重要的现实意义。针对当前实时车辆信息检测中存在的车辆检测区域不完整、精度不高以及无法对场景中较远车辆进行准确定位等相关问题,提出了一种Vehicle-YOLO的实时车辆检测分类模型。该模型在最新的YOLOv3算法基础上,通过更改图像输入参数,增强深度残差网络的特征提取能力,采用5个不同尺寸的特征图依次对潜在车辆的边界框提取等方式来提升车辆实时信息检测的精度和普适性,并通过KITTI、VOC等数据集进行性能验证和分析。实验结果表明,Vehicle-YOLO模型在KITTI数据集上达到了96%的均值平均精度,传输速度约为40 f/s,在精度提升的情况下仍能保持良好的实时检测速率。此外,Vehicle-YOLO检测模型在VOC等其余数据集上的实验结果也展现了不同程度的精度提升,故该模型在常见物体的定位检测中有较好的普适性,相较于传统的物体检测算法模型有更好的表现。 相似文献
15.
针对在智能监控中安全帽佩戴检测准确率低和检测速率慢的问题,提出一种基于改进YOLOv3(You Only Look Once)的安全帽佩戴检测算法YOLOv3-WH.在YOLOv3算法的基础上改进网络结构,增大输入图像的尺度,使用深度可分离卷积结构替换Darknet-53传统卷积,减少特征的丢失,缩减模型参数,提升检测... 相似文献
16.
针对红外场景中行人、车辆等目标识别率低且存在复杂背景干扰的问题,提出一种基于Effi-YOLOv3模型的红外目标检测方法。将轻量高效的EfficientNet骨干网络与YOLOv3网络相结合,提升网络模型的运行速度。通过模拟人类视觉的感受野机制,引入改进的感受野模块,在几乎不增加计算量的情况下大幅增强网络有效感受野。基于可变形卷积和动态激活函数构建DBD和CBD结构,提升模型特征编码的灵活性,扩大模型容量。选择兼顾预测框与真值框中心点距离、重叠率和长宽比偏差的CIoU作为损失函数,更好地反映预测框与真值框的重叠程度,加快预测框回归速度。实验结果表明,该方法在FLIR数据集上的平均精度均值达到70.8%,Effi-YOLOv3模型参数量仅为YOLOv3模型的33.3%,对于红外场景中的目标检测效果更优。 相似文献
17.
单边侧入式大尺寸导光板存在网点分布不均、缺陷大小与形态不一、背景纹理复杂等特点, 而人工选取特征的传统机器视觉方法泛化能力不强. 基于此, 本文提出一种基于改进YOLOv3的大尺寸导光板缺陷检测方法. 首先, 在网络浅层特征层引入改进多分支RFB模块, 增大网络感受野, 丰富目标语义信息, 加强特征提取能力; 其次, 利用深度可分离卷积替换标准卷积, 缩减模型大小和计算量; 进而, 改进K-means算法, 对聚类出的锚框进行线性缩放, 使之更加贴近真实框; 最后, 利用在生产现场采集的大尺寸导光板缺陷图片进行了大量的实验研究. 实验结果表明, 本文提出的检测算法平均精度达到98.92%. 与YOLOv3相比, 平均准确率、F1值分别提升了8.55%、10.76%, 检测速度达到71.6 fps, 可满足工业生产检测要求. 相似文献