首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 50 毫秒
1.

随着生成式人工智能技术的发展,许多领域都得到了帮助与发展,但与此同时虚假信息的构建与传播变得更加简单,虚假信息的检测也随之难度增加. 先前的工作主要聚焦于语法问题、内容煽动性等方面的特点,利用深度学习模型对虚假新闻内容进行建模. 这样的方式不仅缺乏对内容本身的判断,还无法回溯模型的判别原因. 针对上述问题提出一种基于大语言模型隐含语义增强的细粒度虚假新闻检测方法. 该方法充分挖掘并利用了现有的生成式大语言模型所具有的总结与推理能力,按照主干事件、细粒度次要事件和隐含信息推理的顺序进行层级式推导,逐步判别新闻的真实性. 通过分解任务的方式,该方法最大程度发挥了模型的能力,提高了对虚假新闻的捕获能力,同时该方法也具有一定的可解释性,能够为检测提供判别依据.

  相似文献   

2.
探索高效的模态表示和多模态信息交互方法一直是多模态虚假新闻检测领域的热门话题,提出了一项新的虚假新闻检测技术(MAM)。MAM方法使用结合位置编码的自注意力机制和预训练的卷积神经网络分别提取文本和图像特征;引入混合注意力机制模块进行文本与图像特征交互,该模块使用了层级特征处理方法来减少多模态交互时产生的冗余信息,又使用了双向的特征融合手段保证训练信息的完整性;加权融合多模态特征并将其输入全连接网络中进行真假新闻分类。对比实验结果表明:相比现有的多模态基准模型,该方法几乎在各个分类指标上都提高3个百分点左右,此外,可视化实验发现混合注意力机制获得的多模态特征具有更强的泛化能力。  相似文献   

3.
面向多模态的虚假新闻检测工作大部分是利用文本和图片之间的一对一关系,将文本特征和图片特征进行简单融合,忽略了帖子内多张图片内容的有效特征,对帖子间的语义关联建模不足。为了克服现有方法的局限性,该文提出了一种基于文图一对多关系的多模态虚假新闻检测模型。利用跨模态注意力网络筛选多张图片的有效特征,通过多模态对比学习网络动态调整帖子间高层次的语义特征关联,增强融合图文特征的联合表示。在新浪微博数据集上的实验结果表明,该模型能充分利用文图一对多关系的有效信息和帖子之间的语义特征关系,比基线模型准确率提升了3.15%。  相似文献   

4.
现有的大多数虚假新闻检测方法将视觉和文本特征串联拼接,导致模态信息冗余并且忽略了不同模态信息之间的相关性。为了解决上述问题,提出一种基于矩阵分解双线性池化的多模态融合虚假新闻检测算法。首先,该算法将多模态特征提取器捕捉的文本和视觉特征利用矩阵分解双线性池化方法进行有效融合,然后与虚假新闻检测器合作鉴别虚假新闻;此外,在训练阶段加入了事件分类器来预测事件标签并去除事件相关的依赖。在Twitter和微博两个多模态谣言数据集上进行了对比实验,证明了该算法的有效性。实验结果表明提出的模型能够有效地融合多模态数据,缩小模态间的异质性差异,从而提高虚假新闻检测的准确性。  相似文献   

5.
针对现有虚假信息检测方法主要基于单模态数据分析,检测时忽视了信息之间相关性的问题,提出了结合社交网络图的多模态虚假信息检测模型。该模型使用预训练Transformer模型和图像描述模型分别从多角度提取各模态数据的语义,并通过融合信息传播过程中的社交网络图,在文本和图像模态中加入传播信息的特征,最后使用跨模态注意力机制分配各模态信息权重以进行虚假信息检测。在推特和微博两个真实数据集上进行对比实验,所提模型的虚假信息检测准确率稳定为约88%,高于EANN、PTCA等现有基线模型。实验结果表明所提模型能够有效融合多模态信息,从而提高虚假信息检测的准确率。  相似文献   

6.
孟杰  王莉  杨延杰  廉飚 《计算机应用》2022,42(2):419-425
针对虚假信息检测中图片特征提取不充分,以及忽视了单模内关系以及单模与多模之间交互作用的问题,提出一种基于文本和图片信息的多模态深度融合(MMDF)模型.首先,用双向门控循环单元(Bi-GRU)提取文本的丰富语义特征,用多分支卷积?循环神经网络(CNN-RNN)提取图片的多层次特征;然后,建立模间和模内的注意力机制以捕获...  相似文献   

7.
社交媒体的兴起促进了新闻行业的发展,使虚假新闻的传播也变得更为便利,然而多样化的新闻表现形式带来了很多负面影响,比如新闻内容夸大事实、恶意篡改新闻文本或图像内容、构造虚假新闻事实引起社会舆论,这促使了虚假新闻检测工作成为新闻领域新的挑战。为了应对虚假新闻检测工作的研究,将新闻文本与图像信息结合起来,通过多模双线性池化方法,改变传统特征融合方法,构建出基于新特征融合方法的虚假新闻检测模型,并且采用虚假新闻检测领域标准数据集验证模型的性能,实验结果表明,文本与图像的融合特征表现在虚假新闻检测领域不可替代,且所提方法能够有效提升虚假新闻检测性能。  相似文献   

8.
虚假新闻在社交媒体上的广泛传播,会对个人和社会产生极其负面的影响.社交媒体上的虚假新闻检测技术成为重点的研究对象.本文总结现有研究,对虚假新闻检测技术进行了全面的概述,内容包括虚假新闻定义、虚假新闻检测技术分类、评价指标和代表性数据集.  相似文献   

9.
社交网络已经成为人们日常生活中获取和分享信息的主要渠道,同时也为虚假新闻的传播提供了捷径。如今,针对网络虚假新闻的检测问题受到学术界的广泛关注,但目前的检测方法缺乏基于新闻多个视角的深度探索或忽视了新闻中不同信息传播方向不同的问题,有待改进。文章提出一种基于新闻内容、用户信息和新闻传播3种视角的多视图表征和检测的模型MVRFD(Multi-View Representations for Fake News Detection),为虚假新闻检测任务提供更全面的视角。首先,利用协同注意力机制表征新闻内容中的多模态信息,使用具有不同方向的图神经网络聚合新闻传播过程中的用户信息和观点信息;然后,利用双协同注意力机制实现多个视角间的信息交互;最后,将新闻内容特征和新闻上下文特征进行融合。在公开数据集上的实验结果表明,文章所提出的模型实现了96.7%的准确率和96.8%的F1值,优于主流的文本处理模型以及基于单视角的检测模型。  相似文献   

10.
谣言会对社会生活造成不利影响,同时具有多种模态的网络谣言比纯文字谣言更容易误导用户和传播,这使得对多模态的谣言检测不可忽视。目前关于多模态谣言检测方法没有关注词与图片区域对象之间的特征融合,因此提出了一种基于注意力机制的多模态融合网络AMFNN应用于谣言检测,该方法在词-视觉对象层面进行高级信息交互,利用注意力机制捕捉与关键词语相关的视觉特征;提出了基于自注意力机制的自适应注意力机制Adapive-SA,通过增加辅助条件来约束内部的信息流动,使得模态内的关系建模更有目标性和多样性。在两个多模态谣言检测数据集上进行了对比实验,结果表明,与目前相关的多模态谣言检测方法相比,AMFNN能够合理地处理多模态信息,从而提高了谣言检测的准确性。  相似文献   

11.
Traffic detection (including lane detection and traffic sign detection) is one of the key technologies to realize driving assistance system and auto drive system. However, most of the existing detection methods are designed based on single-modal visible light data, when there are dramatic changes in lighting in the scene (such as insufficient lighting in night), it is difficult for these methods to obtain good detection results. In view of multi-modal data can provide complementary discriminative information, based on the YoLoV5 model, this paper proposes a multi-modal fusion YoLoV5 network, which consists of three key components: the dual stream feature extraction module, the correlation feature extraction module, and the self-attention fusion module. Specifically, the dual stream feature extraction module is used to extract the features of each of the two modalities. Secondly, input the features learned from the dual stream feature extraction module into the correlation feature extraction module to learn the features with maximum correlation. Then, the extracted maximum correlation features are used to achieve information exchange between modalities through a self-attention mechanism, and thus obtain fused features. Finally, the fused features are inputted into the detection layer to obtain the final detection result. Experimental results on different traffic detection tasks can demonstrate the superiority of the proposed method.  相似文献   

12.
传统的视频字幕生成模型大多都采用编码器—译码器框架。在编码阶段,使用卷积神经网络对视频进行处理。在解码阶段,使用长短期记忆网络生成视频的相应字幕。基于视频的时序相关性和多模态性,提出了一个混合型模型,即基于硬注意力的多模态视频字幕的生成模型。该模型在编码阶段使用不同的融合模型将视频和音频两种模态进行关联,在解码阶段基于长短期记忆网络的基础上加入了硬注意力机制来生成对视频的描述。这个混合模型在数据集MSR-VTT(Microsoft research video to text)上得到的机器翻译指标较基础模型有0.2%~3.8%的提升。根据实验结果可以判定基于硬注意力机制的多模态混合模型可以生成视频的精准描述字幕。  相似文献   

13.
陶霄  朱焱  李春平 《计算机工程》2021,47(12):71-77
社交媒体内容结构具有复杂性,大量虚假信息掺杂在真实内容中,或者在真实图片上配以杜撰的文字内容,导致基于单个模态的方法难以有效检测谣言。提出基于注意力机制与Dempster’s组合规则的混合融合方法。通过新增用户模态,提取文本、视觉和用户3个模态的特征向量,利用注意力机制对词语和视觉进行双向匹配,给予对谣言检测具有更多贡献的词语和视觉神经元更大的权值。在前后期融合均加入注意力机制,实现特征和决策的自动加权,并使用Dempster's组合规则实现混合融合。在真实的中文Weibo数据集和外文Twitter数据集上的实验结果表明,该方法准确率分别达到97.44%和92.35%,准确率和F1-score指标均高于基准方法和多模态方法。  相似文献   

14.
现有的多数情感分析研究都是基于单一文本或视觉数据,效果还不够理想,多模态数据由于能够提供更丰富的信息,因此多模态情感分析正受到越来越多的关注.社交媒体上视觉数据常常和与之共现的文本数据存在较强的语义关联,因此混合图文的多模态情感分类为社交媒体情感分析提供了新的视角.为了解决图文之间的精细语义配准问题,提出了一种基于层次化深度关联融合网络的多媒体数据情感分类模型.该模型不仅利用图像的中层语义特征,还利用多模态深度多重判别性相关分析来学习最大相关的图像视觉特征表示和文本语义特征表示,而且使形成的视觉特征表示和语义特征表示均具有线性判别性.在此基础上,提出合并图像视觉特征表示和文本语义特征表示的多模态注意力融合网络,以进一步改进情感分类器.最后,在来自于社交网络的真实数据集上的大量实验结果表明,通过层次化捕获视觉情感特征和文本情感特征之间的内部关联,可以更准确地实现对图文融合社交媒体的情感分类预测.  相似文献   

15.
隐喻的目的是启发理解、说服他人。目前,隐喻呈现文本、图像、视频等多模态融合的趋势,因此,识别多模态信息中蕴含的隐喻语义对互联网内容安全具有研究价值。由于缺乏多模态隐喻数据集,难以建立研究模型,因此,当前学者更关注基于文本的隐喻检测。针对这一不足,作者首先从图像-文本、隐喻出现、情感表达和作者意图等角度构建新型多模态隐喻数据集;其次,对数据集的标注者进行 Kappa 分数计算;最后,借助预训练模型和注意力机制融合图像属性特征、图像实体对象特征和文本特征,构建多模态隐喻检测模型,验证多模态数据集的质量和价值。实验结果表明:具有情感和意图表达的隐喻数据集可提升隐喻模型检测效果,多模态信息间相互关系有助于隐喻的理解。  相似文献   

16.
The term ‘corpus’ refers to a huge volume of structured datasets containing machine-readable texts. Such texts are generated in a natural communicative setting. The explosion of social media permitted individuals to spread data with minimal examination and filters freely. Due to this, the old problem of fake news has resurfaced. It has become an important concern due to its negative impact on the community. To manage the spread of fake news, automatic recognition approaches have been investigated earlier using Artificial Intelligence (AI) and Machine Learning (ML) techniques. To perform the medicinal text classification tasks, the ML approaches were applied, and they performed quite effectively. Still, a huge effort is required from the human side to generate the labelled training data. The recent progress of the Deep Learning (DL) methods seems to be a promising solution to tackle difficult types of Natural Language Processing (NLP) tasks, especially fake news detection. To unlock social media data, an automatic text classifier is highly helpful in the domain of NLP. The current research article focuses on the design of the Optimal Quad Channel Hybrid Long Short-Term Memory-based Fake News Classification (QCLSTM-FNC) approach. The presented QCLSTM-FNC approach aims to identify and differentiate fake news from actual news. To attain this, the proposed QCLSTM-FNC approach follows two methods such as the pre-processing data method and the Glove-based word embedding process. Besides, the QCLSTM model is utilized for classification. To boost the classification results of the QCLSTM model, a Quasi-Oppositional Sandpiper Optimization (QOSPO) algorithm is utilized to fine-tune the hyperparameters. The proposed QCLSTM-FNC approach was experimentally validated against a benchmark dataset. The QCLSTM-FNC approach successfully outperformed all other existing DL models under different measures.  相似文献   

17.
施政  毛力  孙俊 《计算机工程》2021,47(8):234-242
在夜间光照不足、目标被遮挡导致信息缺失以及行人目标多尺度的情况下,可见光单模态行人检测算法的检测效果较差.为了提高行人检测器的鲁棒性,基于YOLO提出一种可见光与红外光融合的行人检测算法.使用Darknet53作为特征提取网络,分别提取2个模态的多尺度特征.对传统多模态行人检测算法所使用的concat融合方式进行改进,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号