共查询到19条相似文献,搜索用时 109 毫秒
1.
现有的微博情感分析方法已经注意到了微博文本与图片之间的互补作用,但较少注意用户情感表达的差异和微博内容中除文字之外的特征,为此提出一种多特征融合的图文微博情感分析方法。首先构建文本情感分类模型,将对情感具有很好指示作用的内容特征和用户特征与微博句子进行融合, 然后构造了基于参数迁移和微调的图片情感分类模型。最后设计特征层和决策层融合的方法,将文本和图片情感分类模型进行融合。实验结果表明,内容特征和用户特征有效增强了模型捕捉情感语义的能力,并在多项性能指标上都取得了很好的效果, 构建的图文情感分类模型和融合方法可获得更好的性能。 相似文献
2.
多模态情感分析问题中,图像在不同情况或者对其关注点不同会产生不同的情感,为了解决图像语义理解问题,提出了基于图像语义翻译的图文融合情感分析(ImaText-IST)方法。将图像送入图像翻译模块将其翻译为图像描述,该模块融入了不同的情感表达来进行图像描述捕捉,分别生成积极、中性和消极三个情感极性的图像描述。通过三个情感极性的图像描述和数据集中的文本进行情感相关性分析,从而使得对图像情感理解更加准确。将图像语义描述、目标以及文本进行情感预测,分别采用特征融合及辅助语句的方式进行情感分析。实验结果表明,辅助语句的方式(Axu-ImaText-IST)能更好地理解图文的情感,在社交情感媒体数据集Twitter-15和Twitter-17的Accuracy和Macro-F1均高于基准模型。 相似文献
3.
近年来,用户在社交媒体上越来越多地使用多媒体内容来分享经历和表达情绪。相比单独的文本和图像,融合文本和图像的多媒体内容能够更为充分地揭示用户的真实情感。针对单一文本或图像的情感不明显问题,提出了一种基于卷积神经网络(CNN)的图文融合媒体的情感分析方法。该方法融合图像特征与三个不同级别(词语级、短语级和句子级)的文本特征构建CNN模型,以分析比较不同层次的语义特征对情感预测的影响。在真实数据集上的实验结果表明,通过捕捉文本情感特征和图像情感特征之间的内部联系,可以更准确地实现对图文融合媒体情感的预测。 相似文献
4.
随着社交网络的不断普及,相对于传统的文字描述,人们更倾向于发布图文结合的评论来表达自己的情感与意见。针对图文情感分析方法中仅考虑图文间的高级语义联系,而较少注意图片的低层次情感特征以及中层美学特征与文本情感之间关联性的问题,提出了一种基于多层次空间注意力(MLSA)的图文评论情感分析方法。所提方法以文本内容为驱动,使用MLSA设计图像与文本之间的特征融合方法,该特征融合方法不仅关注与文本相关的图像实体特征,而且充分利用图像的中层美学特征和低层视觉特征,从而从多个不同角度挖掘图文之间的情感共现。在两个公开的图文情感数据集MVSA_Single和MVSA_Multi上,该方法的分类效果相对于对比方法中最优的方法的分类效果在准确率上分别提高了0.96和1.06个百分点,在F1值上分别提高了0.96和0.62个百分点。实验结果表明,综合分析文本特征和图像特征之间的层次化联系能有效地增强神经网络捕捉图文情感语义的能力,从而更准确地预测图文整体的情感。 相似文献
5.
为获得更具判别性的视觉特征并提升情感分类效果,构建融合双注意力多层特征的视觉情感分析模型。通过卷积神经网络提取图像多通道的多层次特征,根据空间注意力机制对多通道的低层特征赋予空间注意力权重,利用通道注意力机制对多通道的高层特征赋予通道注意力权重,分别强化不同层次的特征表示,将强化后的高层特征和低层特征进行融合,形成用于训练情感分类器的判别性特征。在3个真实数据集Twitter Ⅰ、Twitter Ⅱ和EmotionROI上进行对比实验,结果表明,该模型的分类准确率分别达到79.83%、78.25%和49.34%,有效提升了社交媒体视觉情感分析的效果。 相似文献
6.
微博文本包含了特殊符号信息和上下文语义信息,传统的微博情感分析方法忽略了图片影响因素,使得微博的情感分类准确率不高。为此,提出了一种基于转移变量的图文融合微博情感分析方法,首先构建基于转移变量的无监督情感分析模型USAMTV来分析文本情感分布,通过引入连词情感转移变量和转发符号主题转移变量来处理句子的情感从属和主题从属,获得文本的情感分布,然后引入图片因素为情感浓度来影响文本的情感分布,最后计算微博的整体情感倾向。与JST模型和ASUM模型的对比实验结果表明,该方法有更高的准确率,能更准确的预测微博情感倾向。 相似文献
7.
随着以用户为中心的Web 2.0的发展,社交网络平台以惊人的影响力渗入到生活的方方面面,对社交网络中的内容进行情感分析已经成为热点研究课题.Twitter、新浪微博等在线社交网站吸引了大量用户,通过用户间的交互,产生了许多包含用户间社会关系的信息,并且这些社会关系被广泛应用于社交网络的情感分析.融合社会关系的社交网络情... 相似文献
8.
情感分析是一项新兴技术,其旨在探索人们对实体的态度,可应用于各种领域和场景,例如产品评价分析、舆情分析、心理健康分析和风险评估。传统的情感分析模型主要关注文本内容,然而一些特殊的表达形式,如讽刺和夸张,则很难通过文本检测出来。随着技术的不断进步,人们现在可以通过音频、图像和视频等多种渠道来表达自己的观点和感受,因此情感分析正向多模态转变,这也为情感分析带来了新的机遇。多模态情感分析除了包含文本信息外,还包含丰富的视觉和听觉信息,利用融合分析可以更准确地推断隐含的情感极性(积极、中性、消极)。多模态情感分析面临的主要挑战是跨模态情感信息的整合,因此,重点介绍了不同融合方法的框架和特点,并对近几年流行的融合算法进行了阐述,同时对目前小样本场景下的多模态情感分析进行了讨论,此外,还介绍了多模态情感分析的发展现状、常用数据集、特征提取算法、应用领域和存在的挑战。期望此综述能够帮助研究人员了解多模态情感分析领域的研究现状,并从中得到启发,开发出更加有效的模型。 相似文献
9.
10.
由于图文结合更能反映用户的态度和立场,图文情感分析已成为研究热点之一. 然而,现有图文情感分析方法无法有效地提取融合图文信息,致使模型性能低、参数量大、不易部署. 对此,提出了一种基于公共情感特征压缩与融合的轻量级图文情感分析模型. 该模型结合卷积层和全连接层设计的图文特征压缩模块在提取图文特征的同时也进行了压缩,降低了特征维度. 此外,提出了一种基于门控机制的公共情感特征融合模块,将图文特征映射到相同的情感空间,消除了图文特征间的异构性,通过提取、融合图像和文本的公共情感特征,减少了冗余信息. 在Twitter,Flickr,Getty Images这3个基线数据集上的实验结果表明:所提模型比早期模型更有效地提取融合了图文情感信息;和最新模型相比,所提模型大大减少了模型参数并具有更优越的性能,更易部署.
相似文献11.
12.
现有图像情感分析方法较少注意到显著性目标和人脸对图像情感表达的影响。提出一种多视觉目标融合的图像情感分析方法。首先在整张图像中检测显著性目标和人脸目标区域;然后利用特征金字塔改进CNN识别显著性目标情感,在多层监督模块上构建加权损失的CNN识别人脸的情感;最后将显著性目标情感、人脸目标情感与整张图像直接识别出的情感进行融合得到最终的情感分类结果。实验结果表明,多视觉目标融合的图像情感分析比直接识别整张图像的情感分析方法可获得更高的情感分类准确率。 相似文献
13.
14.
朱俭 《计算机工程与应用》2014,50(8):211-214
文本情感分类是指通过挖掘和分析文本中的观点、意见和看法等主观信息,对文本的情感倾向做出类别判断。基于集成情感成员模型提出一种文本情感分析方法。把基于改进的神经网络、基于语义特征和基于条件随机场的三个情感分类模型作为成员模型集成在一起。集成后的模型能够涵盖不同的情感特征,从而克服了传统集成学习中仅关注成员模型处理结果的不足。以公开语料进行实验,集成模型融合了多个成员模型的优势,分类正确率达到了88.2%,远高于任一成员模型的效果。 相似文献
15.
目前多数图像视觉情感分析方法主要从图像整体构建视觉情感特征表示,然而图像中包含对象的局部区域往往更能突显情感色彩。针对视觉图像情感分析中忽略局部区域情感表示的问题,提出一种嵌入图像整体特征与局部对象特征的视觉情感分析方法。该方法结合整体图像和局部区域以挖掘图像中的情感表示,首先利用对象探测模型定位图像中包含对象的局部区域,然后通过深度神经网络抽取局部区域的情感特征,最后用图像整体抽取的深层特征和局部区域特征来共同训练图像情感分类器并预测图像的情感极性。实验结果表明,所提方法在真实数据集TwitterⅠ和TwitterⅡ上的情感分类准确率分别达到了75.81%和78.90%,高于仅从图像整体特征和仅从局部区域特征分析情感的方法。 相似文献
16.
针对传统的卷积神经网络(CNN)在进行情感分析任务时会忽略词的上下文语义以及CNN在最大池化操作时会丢失大量特征信息,从而限制模型的文本分类性能这两大问题,提出一种并行混合神经网络模型CA-BGA。首先,采用特征融合的方法在CNN的输出端融入双向门限循环单元(BiGRU)神经网络,通过融合句子的全局语义特征加强语义学习;然后,在CNN的卷积层和池化层之间以及BiGRU的输出端引入注意力机制,从而在保留较多特征信息的同时,降低噪声干扰;最后,基于以上两种改进策略构造出了并行混合神经网络模型。实验结果表明,提出的混合神经网络模型具有收敛速度快的特性,并且有效地提升了文本分类的F1值,在中文评论短文本情感分析任务上具有优良的性能。 相似文献
17.
流派分类和基于主题的文本分类最大的区别之处就在于文本的特征。流派分类需要能够描述文档风格的、表达更强语义信息的特征,基于特征情感色彩的分类方法是将情感色彩这种语义信息附加到特征上。首先介绍了文档流派分类的概念及其应用,然后分析了流派分类的文本特征和词汇的情感倾向权值的几种计算方法,论述了基于特征情感色彩的文档流派分类过程,最后对几种分类方法进行了实验结果分析和比较。 相似文献
18.
针对时序多模态情感分析中存在的单模态特征表示和跨模态特征融合问题,结合多头注意力机制,提出一种基于多任务学习的情感分析模型.首先,使用卷积神经网络(CNN)、双向门控循环神经网络(BiGRU)和多头自注意力(MHSA)实现了对时序单模态的特征表示;然后,利用多头注意力实现跨模态的双向信息融合;最后,基于多任务学习思想,... 相似文献
19.
中文文本情感分析研究综述 总被引:3,自引:0,他引:3
对中文文本情感分析的研究进行了综述。将情感分类划分为信息抽取和情感识别两类任务,并分别介绍了各自的研究进展;总结了情感分析的应用现状,最后提出了存在的问题及不足。 相似文献