共查询到19条相似文献,搜索用时 93 毫秒
1.
当今许多图像处理任务常用超像素作为降维手段和边缘优化的依据.针对现有方法分割数量过于依赖经验和存在离散点的问题,提出一种基于梯度和流形距离的超像素数量的分割方法,自适应估算图像适合的超像素数量,令细节的分割更为精准同时减少背景区域的过分割.以BSDS500数据集进行实验,该方法在各项指标上有较好表现,尤其解决了离散点问题,在紧致度上得到巨大提升. 相似文献
2.
3.
超像素是一种重要的图像过分割,因为医学图像具有边界模糊、不同组织的灰度范围互相重叠的特点,为超像素分割带来极大困难.针对脑部MR图像超像素生成问题,从脑部MR图像的特点出发,充分利用脑部MR图像表达先验知识,结合脑部MR图像的一般结构,定义每个像素属于脑组织中一个类别的概率,并基于分类概率提出一种有效的边界梯度计算方法;在此基础上,提出一种概率密度加权的测地距离脑部MR图像超像素分割算法;最后应用模糊C均值聚类算法作为后续分割处理,获得脑部MR图像的组织分类.与现有算法在分割性能上进行定量比较的实验结果表明,文中算法能够产生更准确的分割边界. 相似文献
4.
图像分割是计算机视觉领域的传统问题,也是图像分析和模式识别的关键组成部分。提出了一种不依赖于图像分割数参数的图像自动分割算法。基于超像素间的测地距离,根据其定义的局部密度和偏移量,结合K-S假设检验来分析图像最佳分割数,并给出了图像自动分割算法。大量图像分割的实验结果表明:该方法可以准确地对图像进行自动分割,达到了较好的分割效果,相比其它方法,速度更快。 相似文献
5.
6.
7.
针对简单线性聚类算法(SLIC)中需要初始预设超像素个数和大量重复聚类计算的问题,提出一种基于边缘信息的RGB-D图像超像素分割算法。利用各向异性高斯核提取彩色图像中边缘强度信息,在此之上,自适应地提取图像的初始聚类中心。仅对位于图像边缘附近的像素点进行重新聚类标记计算,这种策略在保证聚类准确的同时,大大降低了重新聚类计算的复杂度。同时,本文提出一种基于边缘信息的距离度量准则来度量两个像素点之间的空间距离。在公开的图像数据集上的实验结果表明,相比其他几种算法,本文算法的分割结果更能反应出场景中物体的轮廓信息,而且算法效率更高。 相似文献
8.
王彦林 《电脑编程技巧与维护》2014,(19):78-79
基于边缘检测算法的图像分割技术是图像分析基础算法之一,在讨论边缘检测算法基本原理的基础上,在Matlab中实现了边缘检测算法,并对Sobel算子、Prewitt算子和Roberts算子在边缘检测中的效果进行了对比分析。 相似文献
9.
10.
图像分割是由图像处理到图像分析的关键步骤。传统的K-means聚类算法在进行图像分割处理时,由于其算法本身的一些缺陷,使得图像颜色像素在进行聚类时会出现比较高误分类率,为了降低这一比率本文将一种改进的K-means聚类方法应用于图像分割研究中,取得了明显的效果。 相似文献
11.
交互式图像分割是图像分割中的重要分支,在现实生活和医学领域都有着广泛的应用.该文基于计算测地距离的热方法,引入了热扩散系数,提出了一种基于非均匀热扩散的交互式图像分割算法.该算法利用图像的颜色信息构造三角网格作为热扩散的媒介,首先由热方程找到距离增加的方向,再利用泊松方程还原测地距离.将前景中人工交互区域上的热流扩散速... 相似文献
12.
提出模糊聚类和边缘检测结合的彩色图像分割方法,以色彩图像直方图中自适应搜索到的峰值作为聚类中心,对图像进行模糊聚类。然后对模糊聚类后的图像进行边缘检测,检测出面积较大的区域的边缘,首先在区域内部进行融合,然后在区域边界和面积较小色彩相似的区域融合。实验表明,本方法不需预先确定聚类数目、聚类中心初始化,在区域融合后,可得到较好的分割效果。 相似文献
13.
基于形态学梯度的图像边缘检测算法 总被引:2,自引:0,他引:2
边缘检测是数字图像处理的一个重要内容,讨论了经典的边缘检测算子算法,该算法更多地采用Prewitt算子、LOG算子、Canny算子等在空域中进行。数学形态学在图像处理中有广泛的应用,其基本原理是基于利用结构元素去探测图像;在讨论常见数学形态学梯度的基础上,提出了一种基于形态学梯度的图像边缘检测算法,应用定义的形态学梯度结构检测出较理想的图像边缘信息。仿真结果表明,该算法在含噪图像中能得到较为理想的图像边缘信息,其抗噪声性能明显地优于经典的算子检测算法,在检测精度方面较经典的单一算子检测方法亦有一定的改善。 相似文献
14.
边缘检测是数字图像处理的一个重要内容,讨论了经典的边缘检测算子算法,该算法更多地采用Prewitt算子、LOG算子、Canny算子等在空域中进行。数学形态学在图像处理中有广泛的应用,其基本原理是基于利用结构元素去探测图像;在讨论常见数学形态学梯度的基础上,提出了一种基于形态学梯度的图像边缘检测算法,应用定义的形态学梯度结构检测出较理想的图像边缘信息。仿真结果表明,该算法在含噪图像中能得到较为理想的图像边缘信息,其抗噪声性能明显地优于经典的算子检测算法,在检测精度方面较经典的单一算子检测方法亦有一定的改善。 相似文献
15.
16.
对噪声图像提出了一种改进的模糊聚类分割算法。因为模糊C均值聚类(FCM)算法具有对噪声数据敏感的缺点,该算法通过提升意义更趋明晰的模糊隶属度来改变模糊聚类中的目标函数,即通过在标准的FCM算法中使用到类的Voronoi cell的距离来取代到类的原型的欧氏距离,从而增强了聚类结果的鲁棒性。实验结果表明,改进的算法较之于FCM对于噪声图像的分割有更好的鲁棒性。 相似文献
17.
论文以集装箱号码图像为例,在分析比较几种流行的图像分割算法后,提出一种新的基于有效梯度信息的图像分割算法,即直接针对梯度图,对目标与背景边界部分的梯度信息进行统计分析,并在此基础上直接得到图像的阈值,完成分割。实验表明,对于类似集装箱号码的复杂图像,论文方法能得到较其他方法更好的分割效果。此外,论文方法有较好的实用性,能广泛应用于多种图像分割领域。 相似文献
18.
FCM聚类算法对初始值敏感,不良的初始值会导致算法的收敛速度过慢和收敛到局部极值。将FEM算法用于图像分割处理时,初始值的选择是一个难点。文中提出了一种使用自适应初始值的FCM聚类图像分割算法,该方法利用图像的直方图特性建立候选聚类中心集,通过初始化准则函数检验候选集得到合适的聚类中心和聚类数目,并根据最大隶属度原则分割图像,得到了较好的分割效果。理论分析和实验表明文中方法收敛速度快,分割准确,自适应性很强。 相似文献
19.
针对C-V法的水平集图像分割法缺少局部控制能力等问题,将基于边缘的几何主动轮廓线模型和基于区域的C-V法两者结合起来,提出了基于梯度的混合Mumford-Shah图像分割模型HMSG。给出了HMSG模型的参数设置准则,在分割的初期加大模型中全局特征项的权值,在分割的后期则加大局部特征项的权值,以提高模型的图像分割能力。对合成图像与医学图像的分割实验结果表明,该方法优于C-V方法对于含有噪声和边缘模糊的非二值图像的分割,能够较为准确地提取图像边界,可以有效提高图像分割整体性能。 相似文献