共查询到20条相似文献,搜索用时 62 毫秒
1.
基于条件生成对抗网络的人脸补全算法 总被引:1,自引:0,他引:1
《传感器与微系统》2019,(6):129-132
针对人脸遮挡区域重建问题,提出一种基于条件生成对抗式网络(CGAN)的人脸补全算法。首先遮挡人脸先通过卷积神经网络(CNN)进行五官等脸部特征提取,并作为一种约束信息输入生成器和判别器中,其中生成器将遮挡区域进行重构,重构人脸再分别输入局部信息判别器和全局信息判别器中,结合损失函数,最终生成完整人脸。在Celeb A数据集上,将重构后人脸与原图进行相似度比较,结果表明:该算法能够生成更加贴近原图的人脸。 相似文献
2.
为解决传统素描人脸合成方法中素描人脸图像细节模糊和清晰度低的问题,提出一种基于双层生成对抗网络的素描人脸合成方法。该方法学习面部照片与素描人脸图像之间的映射关系,并通过双层网络将映射关系限制为一对一映射;利用重建损失函数约束生成网络,提高合成能力;通过生成网络与判别网络的对抗训练,优化网络参数,合成最终素描人脸图像。通过在CUHK素描人脸库上的对比实验,证明该方法合成的素描人脸图像质量明显优于其他传统素描人脸合成方法,其合成的素描人脸图像面部细节更完整,清晰度更高。 相似文献
3.
三维频谱态势是解决空天地信息网络中频谱资源利用不足的重要手段,可以表征功率谱密度在三维电磁空间的时空频分布情况,由此通信系统可“有的放矢”地实现频谱预测、频谱决策和频谱管控等多种应用。但受限于用户部署等因素,实际构建的三维频谱态势往往离散且缺损。因此,本文提出一种基于生成对抗网络的三维频谱态势补全算法。然后进一步提出一种改进的生成对抗网络结构和一系列的数据处理方法,以降低算法的补全误差和训练时间。仿真结果表明,所提出的算法能有效地对缺损三维频谱态势进行补全,并且其补全精度远优于传统插值方法。 相似文献
4.
5.
6.
当图像中的人脸存在较大角度的偏转时,由于自身遮挡,单幅图像3D人脸重建方法较难获取整张人脸的纹理和几何细节.考虑人脸纹理特征分布和几何细节的特征分布的双向关联特性,提出一种统一框架下的协同补全模型TDGAN.首先,将颜色纹理和几何细节映射到同一UV空间;然后,通过统一的生成对抗网络协同补全纹理与几何,并对这2部分信息分别设计全局与局部判别器,以实现纹理和几何的全局与局部一致性;最后,为了充分利用颜色纹理和几何细节共有特征,增加了一个纹理-几何一致性约束网络,从而得到高完整度和高一致性的颜色纹理与几何细节UV图.在当前最大3D人脸数据集FaceScape的实验表明,TDGAN比独立的UV空间补全方法能得到更高质量的补全结果. 相似文献
7.
当前主流的基于生成对抗网络(Generative Adversarial Network,GAN)的图像生成方法,在生成真实度较高的人脸图像方面取得了显著进展,但在生成人脸图像的头发、牙齿等细节区域时易出现失真现象。针对存在的问题,提出掩码损失,并将其整合到Style GAN2中。该损失函数通过人脸分割网络生成人脸掩码,基于掩码调整生成图像在细节和非细节区域的贡献程度,以提高细节区域的合成质量。实验结果表明,所提方法显著改善了头发、牙齿等细节区域的合成质量,提高了生成图像的真实度。 相似文献
8.
基于生成式对抗网络的鲁棒人脸表情识别 总被引:1,自引:0,他引:1
人们在自然情感交流中经常伴随着头部旋转和肢体动作,它们往往导致较大范围的人脸遮挡,使得人脸图像损失部分表情信息.现有的表情识别方法大多基于通用的人脸特征和识别算法,未考虑表情和身份的差异,导致对新用户的识别不够鲁棒.本文提出了一种对人脸局部遮挡图像进行用户无关表情识别的方法.该方法包括一个基于Wasserstein生成式对抗网络(Wasserstein generative adversarial net,WGAN)的人脸图像生成网络,能够为图像中的遮挡区域生成上下文一致的补全图像;以及一个表情识别网络,能够通过在表情识别任务和身份识别任务之间建立对抗关系来提取用户无关的表情特征并推断表情类别.实验结果表明,我们的方法在由CK+,Multi-PIE和JAFFE构成的混合数据集上用户无关的平均识别准确率超过了90%.在CK+上用户无关的识别准确率达到了96%,其中4.5%的性能提升得益于本文提出的对抗式表情特征提取方法.此外,在45°头部旋转范围内,本文方法还能够用于提高非正面表情的识别准确率. 相似文献
9.
针对基于生成对抗网络人脸生成技术发展迅速、生成效果越来越逼真可信的现状,本文对该技术的基本原理、衍生模型和已有应用进行分析和研究,发现该技术在国家公共安全、新闻舆论动员、企业经济运行、生物认证防护、社会伦理道德等方面存在重大信息安全风险.本文立足我国科技公共治理体制、机制存在不足的具体国情,从法律建设、行业管理、技术引导、宣传教育等方面给出了对策建议. 相似文献
10.
年龄信息作为人类生物特征识别的重要组成部分,在社会保障和数字娱乐等领域具有广泛的应用前景。人脸年龄合成技术由于其广泛的应用价值,受到了越来越多学者的重视,已经成为计算机视觉领域的重要研究方向之一。随着深度学习的快速发展,基于生成对抗网络的人脸年龄合成技术已成为研究热点。尽管基于生成对抗网络的人脸年龄合成方法取得了不错的成果,但生成的人脸年龄图像仍存在图像质量较差、真实感较低、年龄转换效果和多样性不足等问题。主要因为当前人脸年龄合成研究仍存在以下困难: 1)现有人脸年龄合成数据集的限制; 2)引入人脸年龄合成的先验知识不足; 3)人脸年龄图像的细粒度性被忽视; 4)高分辨率下的人脸年龄合成问题;5)目前人脸年龄合成方法的评价标准不规范。本文对目前人脸年龄合成技术进行全面综述,以人脸年龄合成方法为研究对象,阐述其研究现状。通过调研文献,对人脸年龄合成方法进行分类,重点介绍了基于生成对抗网络的人脸年龄合成方法。此外,本文还讨论了常用的人脸年龄合成数据集及评价指标,分析了各种人脸年龄合成方法的基本思想、特点及其局限性,对比了部分代表方法的性能,指出了该领域目前存在的挑战并提供了一些具有潜力的研究方向,为研究者们解决存在的问题提供便利。 相似文献
11.
针对目前的遮挡人脸图像修复领域中遮挡部位与遮挡大小的限制或修复后人脸图像不够连贯等问题,提出一种改进的Wasserstein生成对抗网络(WGAN)方法来改善人脸图像的修复.将卷积神经网络作为生成器模型,并在对应层间加入跳跃连接来增强生成图像的准确性.在判别器中引入Wasserstein距离进行判别,并引入梯度惩罚来完... 相似文献
12.
针对现有方法分解质量不佳、特征信息不够清晰的问题,提出一种基于深度残差生成对抗网络的本征图像分解算法,用于将单个图像本征分解为反照率和阴影分量.该算法是基于一个全卷积神经网络.通过引入残差块的单个端到端深序列以及两个经过对抗训练的判别器形成了对图像敏感的感知动机度量网络,在不需要任何物理先验和几何信息前提下,实现了单幅... 相似文献
13.
武器系统的效能评估受很多因素的影响,神经网络是现代武器系统效能评估的重要方法,但受样本量的限制,很难达到预期的训练效果。针对这一问题,选取少批量真实数据训练生成对抗网络,待网络达到纳什均衡后,利用生成网络产生同分布的伪数据。将伪数据与真实数据结合形成扩增样本,使用扩增样本训练深度神经网络用以评估。同时,生成对抗网络中的判别网络也能为专家评估提供一定的参考。 相似文献
14.
针对现有的语义分割算法存在分割结果空间不一致的问题,提出一种基于加权损失函数的多尺度对抗网络语义分割算法。在DeepLab v3基本框架的基础上,引入Pix2pix网络作为生成对抗网络模型,实现多尺度对抗网络语义分割。同时,为增加模型的泛化能力与训练精度,提出将传统的多分类交叉熵损失函数与生成器输出的内容损失函数和鉴别器输出的对抗损失函数相结合,构建加权损失函数。大量定性定量实验结果表明,该算法能够识别并分割细小的物体,其语义分割性能超过现有的深度网络,在保证语义分割空间一致性的同时提高了分割效率。 相似文献
15.
针对小波神经网络的结构设计和权值选取,提出一种基于QR分解的递推正交最小二乘算法以节省计算资源和计算时间,仿真结果表明基于QR-ROLS(QR Decomposition-Recursive Orthogonal Least Squares)算法的小波神经网络比依据时频特性设计的小波神经网络结构更优,运行效率更高. 相似文献
16.
将深度学习用于图像边缘提取,获取线稿图。常见的图像边缘获取算法存在两个缺陷:只考虑到了图像边缘的一阶、二阶数据特征,并未发掘其高阶数据特征及其他隐含特征;没有设定合理的阈值,而阈值直接影响着检测效果。这两个因素使得到的图像线稿图效果不佳。鉴于此,提出基于条件对抗网络生成人体肖像线稿图的方案,并在最终的实验中取得了良好效果。 相似文献
17.
知识图谱是事实三元组的集合,其表示形式为(头实体,关系,尾实体).为了补全知识图谱中缺失的实体和关系,提出一种基于卷积神经网络的知识图谱补全方法.使用传统嵌入模型训练三元组,得到实体向量和关系向量;将三元组表示成3列矩阵,作为卷积神经网络的输入,卷积后得到三元组的特征表示图;连接所有特征图和权重向量进行点乘得到每个三元... 相似文献
18.
本文描述了一种用于PCB布通率分析的分析模型,提出了一种信号网络的分解、合成及排序方法。可以有效地解决印制板布局和布线过程间的网络优化问题,进一步提高自动布线的布通率。 相似文献
19.
基于神经网络和小波分析的血细胞识别算法 总被引:1,自引:0,他引:1
结合小波变换时频局部化特性和神经网络的优势,提出了一种基于神经网络和小波分析的血细胞识别算法.首先对血细胞信号进行小波分解,然后利用小波分解系数重构信号的能量,结合时域特征参数构造特征向量作为神经网络的输入,最后建立神经网络模型进行训练.通过实验分析了不同条件下的信号识别情况,并与传统的识别算法作了比较,结果表明算法具有较强的血细胞识别能力,与传统的识别算法相比,识别准确度更高. 相似文献
20.
为解决人脸特征提取过程中局部特征缺失的问题,借助局部二值模式(LBP)与方向梯度直方图(HOG)提出一种基于多级纹理特征融合的深度信念网络人脸识别算法。以提取局部纹理特征以及边缘纹理特征为出发点,对人脸图像进行三级纹理特征提取。使用MB-LBP提取初级纹理特征;在此基础上进行改进的CS-LBP图像特征提取作为二级纹理特征;使用HOG算子在二级纹理特征上完成三级纹理特征提取。将二级和三级纹理特征直方图顺序串联融合后输入到深度信念网络(DBN)逐层贪婪训练,优化网络参数,并用优化的网络在ORL、YELA人脸标准库中进行测试,识别率均在92%以上。该算法与传统算法(SVM、PCA)相比较拥有更好的人脸识别效果,同时也表明了局部纹理特征的改善为识别过程的特征提取提供强有力的保障,为人脸识别的进一步研究开拓新思路。 相似文献