首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。  相似文献   

2.
基于深度学习的单幅图像超分辨率网络模型体积庞大,导致参数利用率低且难以部署,对中间层特征利用不充分。提出一种密集反馈注意力网络(DFAN)模型。在同一特征图中通过多尺度残差注意力模块(MRAB)提取不同尺度的深层特征,以增加特征的多样性。同时将每个MRAB的输出均作为同组中其他残差模块的输入,使各层之间的信息流最大化,从而减小训练难度。实验结果表明,相比VDSR、DRRN、MemNet等模型,DFAN模型具有较优的重建效果,其在重建放大倍数为4的Set5数据集上计算复杂度仅为VDSR模型的0.14倍左右,而峰值信噪比提高了0.57 dB。  相似文献   

3.
针对经典的基于卷积神经网络的单幅图像超分辨率重建方法网络较浅、提取的特征少、重建图像模糊等问题,提出了一种改进的卷积神经网络的单幅图像超分辨率重建方法,设计了由密集残差网络和反卷积网络组成的新型深度卷积神经网络结构。原始低分辨率图像输入网络,利用密集残差学习网络获取更丰富的有效特征并加快特征梯度流动,其次通过反卷积层将图像特征上采样到目标图像大小,再利用密集残差学习高维特征,最后融合不同卷积核提取的特征得到最终的重建图像。在Set5和Set14数据集上进行了实验,并和Bicubic、K-SVD、SelfEx、SRCNN等经典重建方法进行了对比,重建出的图像在整体清晰度和边缘锐度方面更好,另外峰值信噪比(PSNR)平均分别提高了2.69?dB、1.68?dB、0.74?dB和0.61?dB。实验结果表明,该方法能够获取更丰富的细节信息,得到更好的视觉效果,达到了图像超分辨率的增强任务。  相似文献   

4.
为深入了解基于深度学习的单图像超分辨率重建(SISR)的发展,把握当前研究的热点和方向,针对现有基于深度学习的单图像超分辨率重建模型进行了梳理。介绍了相关深度学习算法和基于深度学习的模型以及评价指标,并通过实验对比分析现有模型的性能,其目的在于从本质上了解基于深度学习的单图像超分辨率重建模型的优势;对单图像超分辨率重建的关键问题进行了总结,并对未来的发展趋势进行了展望。  相似文献   

5.
肖雅敏  张家晨  冯铁 《计算机工程》2021,47(2):293-299,306
基于卷积神经网络的单图像超分辨率模型网络结构过深,导致高频信息丢失以及模型体积庞大等问题.提出一种由多个残差模块构成的多窗口残差网络优化模型,通过使用多个不同尺寸的窗口对同一特征图进行提取,获取更丰富的高频与低频信息,并过滤出深层网络的所需特征.残差模块中较大尺寸的窗口采用较小尺寸的滤波器和多层映射层叠加组成,可在减少...  相似文献   

6.
《微型机与应用》2019,(7):54-59
针对现有的SRCNN算法网络训练时间太长、重建性能不佳、运行速度较慢的问题,提出了一种新的图像超分辨率重建算法,基于卷积神经网络以低分辨率的图像作为网络输入,利用卷积操作学习图像的高阶表示,通过反卷积操作进行上采样重建图像,同时在网络中加入残差结构,使得整个网络能够更好地收敛。在Set5、Set14、BSD200测试集上的实验结果表明,相比双三次插值法Bicubic、SRCNN等方法,所提方法对图像的超分辨率重建效果更好,运行速度有很大的提升,且网络的收敛速度更快。  相似文献   

7.
数字图像在传递信息中起着重要的作用,图像超分辨率技术能丰富图像的细节信息.针对许多网络对低分辨率图像的有效特征复用不足和参数量过大的问题,本文结合不同大小的卷积核以及注意力残差机制构建图像超分辨率网络,用3个有差别尺度的卷积层来提取图像的特征,其中第2和第3层用小卷积核替代大的卷积核,对3层卷积融合之后引入注意力机制,...  相似文献   

8.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性.针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法.整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,...  相似文献   

9.
申利华  李波 《计算机应用》2023,43(5):1612-1619
针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在特征映射层设计基于残差网络的局部结构,再用特殊的密集网络连接此类局部结构;再次,在特征重建层利用卷积神经网络(CNN)将不同深度的卷积层逐渐降为图像大小;最后,利用残差网络融合初始低分辨率(LR)特征与重建的高分辨率(HR)特征,形成最终的SR图像。对比实验显示,FPN中2次特征融合和特征映射中5个局部结构连接的深度学习网络效果更佳。所提出的网络相较于超分辨率卷积神经网络(SRCNN)等经典网络重建SR图像的峰值信噪比(PSNR)更高,并且可以获得更好的视觉质量。  相似文献   

10.
现有基于卷积神经网络的单图像超分辨率模型存在三个限制。理论上存在无限的HR图像,可以下采样到相同的LR图像,可能的函数空间非常大。因为现实世界潜在的下采样方法是未知的,使用特定方法配对的数据训练的模型在实际应用中泛化能力差,产生适应性问题。忽视残差分支的高频层次特征。针对上述问题,提出双重回归方案。除了学习从LR到HR图像的原始回归映射之外,额外学习一个对偶回归映射来估计下采样核并重建LR图像,形成一个闭环提供额外的监督,并在残差结构上引入了傅里叶变换,增强模型对高频信息的表达能力。相比其他先进模型以更少的参数重建HR图像,且拥有丰富的高频纹理细节。  相似文献   

11.
对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.0066。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。  相似文献   

12.
由于水体本身的特性以及水中悬浮颗粒对光的吸收和散射作用,水下图像普遍存在信噪比(SNR)低、分辨率低等一系列问题,但大部分方法传统处理方法包含图像增强、复原及重建,都依赖退化模型,并存在算法病态性问题。为进一步提高水下图像恢复算法的效果和效率,提出了一种改进的基于深度卷积神经网络的图像超分辨率重建方法。该方法网络中引入了改良的密集块结构(IDB),能在有效解决深度卷积神经网络梯度弥散问题的同时提高训练速度。该网络对经过配准的退化前后的水下图像进行训练,得到水下低分辨率图像和高分辨率图像之间的一个映射关系。实验结果表明,在基于自建的水下图像作为训练集上,较卷积神经网络的单帧图像超分辨率重建算法(SRCNN),使用引入了改良的密集块结构(IDB)的深度卷积神经网络对水下图像进行重建,重建图像的峰值信噪比(PSNR)提升达到0.38 dB,结构相似度(SSIM)提升达到0.013,能有效地提高水下图像的重建质量。  相似文献   

13.
叶杨  蔡琼  杜晓标 《计算机应用》2005,40(12):3618-3623
单图像超分辨率是一个不适定的问题,是指在给定模糊和低分辨率图像的情况下重建纹理图案。卷积神经网络(CNN)最近被引入超分辨率领域中,尽管当前研究通过设计CNN的结构和连接方式获得了出色的性能,但是忽略了可以使用边缘数据来训练更强大的模型,因此提出了一种基于边缘数据增强的方法,即单图像超分辨率的非局部通道注意力(NCA)方法。该方法可以充分利用训练数据并通过非局部通道注意力提高性能。所提方法不仅为设计网络提供了引导,而且也可以对超分辨率任务进行解释。非局部通道注意力网络(NCAN)模型由主分支和边缘增强分支组成,通过往模型里输入低分辨率图像并预测边缘数据,使主分支自注意力重建超分辨率图像。实验结果表明,在BSD100基准数据集上与二阶注意力网络(SAN)模型相比,NCAN在3倍放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了0.21 dB和0.009;在Set5、Set14等其他基准数据集上与深度残差通道注意力网络(RCAN)模型相比,NCAN在3倍和4倍放大因子下的PSNR和SSIM都取得了较为明显的提升。NCAN在可比参数方面性能超过了最新模型。  相似文献   

14.
梁敏  王昊榕  张瑶  李杰 《计算机应用》2021,41(5):1438-1444
针对深层网络架构的图像超分辨率重建任务中存在网络参数多、计算复杂度高等问题,提出了一种基于加速残差网络的图像超分辨率重建方法.首先,构建一个残差网络对低分辨率图像与高分辨率图像之间的高频残差信息进行重建,以减少冗余信息的深层网络传输过程,提高重建效率;然后,通过特征收缩层对提取的低分辨率特征图进行降维,从而以较少的网络...  相似文献   

15.
叶杨  蔡琼  杜晓标 《计算机应用》2020,40(12):3618-3623
单图像超分辨率是一个不适定的问题,是指在给定模糊和低分辨率图像的情况下重建纹理图案。卷积神经网络(CNN)最近被引入超分辨率领域中,尽管当前研究通过设计CNN的结构和连接方式获得了出色的性能,但是忽略了可以使用边缘数据来训练更强大的模型,因此提出了一种基于边缘数据增强的方法,即单图像超分辨率的非局部通道注意力(NCA)方法。该方法可以充分利用训练数据并通过非局部通道注意力提高性能。所提方法不仅为设计网络提供了引导,而且也可以对超分辨率任务进行解释。非局部通道注意力网络(NCAN)模型由主分支和边缘增强分支组成,通过往模型里输入低分辨率图像并预测边缘数据,使主分支自注意力重建超分辨率图像。实验结果表明,在BSD100基准数据集上与二阶注意力网络(SAN)模型相比,NCAN在3倍放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)分别提升了0.21 dB和0.009;在Set5、Set14等其他基准数据集上与深度残差通道注意力网络(RCAN)模型相比,NCAN在3倍和4倍放大因子下的PSNR和SSIM都取得了较为明显的提升。NCAN在可比参数方面性能超过了最新模型。  相似文献   

16.
姚鲁  宋慧慧  张开华 《计算机应用》2020,40(10):3048-3053
目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该网络框架利用局部跨通道相互作用策略将之前一、二阶通道注意力模型采用的升降维改为核为k的一维卷积。这样不仅使得通道注意力预测更直接准确,而且得到的模型相比之前的通道注意力模型更简单;同时,采用改进一、二阶通道注意力模型以综合利用不同阶通道注意力的优势,提高网络判别能力。在基准数据集上的实验结果表明,和现有的超分辨率算法相比,所提算法重建图像的纹理细节和高频信息能得到更好的恢复,且在Set5和BSD100数据集上感知指数(PI)分别平均提高0.3和0.1。这表明此网络能更准确地预测通道注意力并综合利用了不同阶通道注意力,一定程度上提升了性能。  相似文献   

17.
欧阳宁  韦羽  林乐平 《计算机应用》2005,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

18.
欧阳宁  韦羽  林乐平 《计算机应用》2020,40(10):3041-3047
针对图像超分辨率重建模型需要大量参数去捕获低分辨率(LR)图像和高分辨率(HR)图像之间的统计关系,以及使用L1L2损失优化的网络模型不能有效恢复图像高频细节等问题,提出一种结合感知边缘约束与多尺度融合网络的图像超分辨率重建方法。该方法基于由粗到细的思想,设计了一种两阶段的网络模型。第一阶段通过卷积神经网络(CNN)提取图像特征,并将图像特征上采样至HR大小,得到粗糙特征;第二阶段使用多尺度估计将低维统计模型逐步逼近高维统计模型,将第一阶段输出的粗糙特征作为输入来提取图像多尺度特征,并通过注意力融合模块逐步融合不同尺度特征,以精细化第一阶段提取的特征。同时,该方法引入一种更丰富的卷积特征用于边缘检测,并将其作为感知边缘约束来优化网络,以更好地恢复图像高频细节。在Set5、Set14和BSDS100等基准数据集上进行实验,结果表明与现有的基于CNN的超分辨率重建方法相比,该方法不但能够重建出更为清晰的边缘和纹理,而且在×3和×4放大因子下的峰值信噪比(PSNR)和结构相似度(SSIM)都取得了一定的提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号