共查询到17条相似文献,搜索用时 102 毫秒
1.
2.
为解决传统有监督算法难以达到较高预测精度的问题,提出了一种新的半监督模型。首先,将不同传感器采集的监测数据直接作为网络输入,减少了可能出现的信息损失;接着,在无监督部分采用变分自动编码器(variationalautoencoder,VAE),以自动提取输入数据的深层表达;然后,在有监督部分使用卷积长短期记忆(convolutionallongshort-term memory, ConvLSTM)网络进一步提取时序数据的时空特征,并引入注意力机制,提高重要特征因子的权重;最后,在NASA提供的C-MAPSS数据集上进行对比实验,以均方根误差和数据集自定义的Score作为评价指标。实验结果表明,所提出的模型在复杂预测场景中取得了最好的结果,证明了该模型的有效性。 相似文献
3.
4.
飞机刹车片在飞机制动过程中起着十分重要的作用.对刹车片进行准确的剩余使用寿命(RUL)预测对于减少制动故障以及节省人力物力资源具有重要意义.针对飞机刹车片磨损序列的非平稳和非线性等特点,提出了一种基于双向长短期记忆(BiLSTM)网络的飞机刹车片RUL预测模型——VMD-BiLSTM模型.首先,利用变分模态分解(VMD... 相似文献
5.
针对航空发动机剩余使用寿命(RUL)预测方法没有同时加权不同时间步下的数据,包括原始数据和所提取的特征,导致RUL预测准确性较低的问题,提出了一种基于优化混合模型的RUL预测方法。首先,选用三种不同的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入至卷积神经网络(CNN)和Bi-LSTM网络中。然后,采用融合多路径特征预测的思想,将上述提取到的特征融合后输入至全连接网络获得RUL预测结果。最后,使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证方法的有效性。实验结果显示,所提方法在4个数据集上均有较好的表现。以FD001数据集为例,所提方法的均方根误差(RMSE)比Bi-LSTM网络降低了9.01%。 相似文献
6.
提出了一种基于自注意力思想长短时记忆神经网络(Self-Attention Mechanism Long Short-Term Memory Networks,SAM-LSTM)的寿命趋势指标构建方法。首先对原始信号进行滤波降噪处理;其次利用自注意力思想提取信号内部的退化趋势信息构建特征矩阵;接着采用双层长短时记忆神经网络在保留信号外部之间的时序关系的同时,映射特征得到寿命趋势指标;最后提出一种基于历史预测使用寿命指标动态选择拟合数据集的拟合方法,预测滚动轴承的剩余有效寿命。结合公开数据集对模型进行了验证,与另外两种方法对比表明,该方法能有效提升滚动轴承的剩余寿命预测的准确率,并且在不同工况下具有一定的泛化能力。 相似文献
7.
在基于深度学习的轴承剩余使用寿命(RUL)预测方法中,时间卷积网络(TCN)忽略了振动数据中未来时间信息的重要性,长短期记忆网络(LSTM)难以有效地学习振动数据的长时间序列特征.针对以上问题,提出一种基于并行双向时间卷积网络(Bi-TCN)和双向长短期记忆网络(Bi-LSTM)的轴承RUL预测方法.首先,对多传感器数据进行归一化处理,并将每个传感器数据进行通道合并,实现多传感器数据的高效融合;然后,采用Bi-TCN和Bi-LSTM构建并行的双分支特征学习网络,其中Bi-TCN提取数据的双向长时间序列特征, Bi-LSTM提取数据的时间相关特征;同时,设计一种特征融合注意力机制,该机制分别计算Bi-TCN和Bi-LSTM的输出权重,以实现两种网络输出特征的自适应加权融合;最后,融合特征通过全连接层并输出轴承RUL的预测结果.利用西安交通大学轴承数据集和PHM 2012轴承数据集进行RUL预测实验,实验结果表明,与其他先进的预测方法相比,所提出方法可以准确预测更多类型轴承的RUL,同时具有更低的预测误差. 相似文献
8.
传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部分组成:前端为卷积注意力网络(CAN),学习通道和时间维度中的深层故障特征,提高特征的表征能力;后端为改进LSTM网络,基于退化特征对轴承进行寿命预测.归一化健康指标至[0,1]区间内,得到相同的失效阈值;使用五点平滑法对预测结果进行处理,实现预测结果的输出;利用留一法对轴承全寿命试验数据进行验证,测试模型的准确性和适应性.试验结果表明:所提模型的平均均方根误差和平均绝对值误差比仅用CNN模型预测值低54.12%和59.05%,比仅用LSTM模型预测值低39.06%和43.42%,比卷积长短时记忆网络(CNN-LSTM)低20.41%和25.86%. 相似文献
9.
10.
11.
针对工业机器人机械轴健康管理中检测效率和精准度较低的问题,提出了一种机械轴运行监控大数据背景下的基于动作周期退化相似性度量的健康指标(HI)构建方法,并结合长短时记忆(LSTM)网络进行机器人剩余寿命(RUL)的自动预测。首先,利用MPdist关注机械轴不同动作周期之间子周期序列相似性的特点,并计算正常周期数据与退化周期数据之间的偏离程度,进而构建HI;然后,利用HI集训练LSTM网络模型并建立HI与RUL之间的映射关系;最后,通过MPdist-LSTM混合模型自动计算RUL并适时预警。使用某公司六轴工业机器人进行实验,采集了加速老化数据约1 500万条,对HI单调性、鲁棒性和趋势性以及RUL预测的平均绝对误差(MAE)、均方根误差(RMSE)、决定系数( )、误差区间(ER)、早预测(EP)和晚预测(LP)等指标进行了实验测试,将该方法分别与动态时间规整(DTW)、欧氏距离(ED)、时域特征值(TDE)结合LSTM的方法,MPdist结合循环神经网络(RNN)和LSTM等方法进行比较。实验结果表明,相较于其他对比方法,所提方法所构建HI的单调性和趋势性分别至少提高了0.07和0.13,RUL预测准确率更高,ER更小,验证了所提方法的有效性。 相似文献
12.
针对当前软件剩余使用寿命预测方法忽略了多性能指标间所蕴涵寿命信息的问题,提出一种融合多性能指标Transformer(TransMP)模型的Web系统剩余寿命预测方法。首先,搭建内存故障型Web系统加速老化实验平台,创建包含内存使用量、响应时间和吞吐率性能指标的数据集;其次,考虑不同性能指标蕴涵老化特征信息的差异性,构造由多编码器-解码器组成的TransMP模型,将性能指标数据分别输入内存指标编码器、响应时间编码器和吞吐率编码器提取老化特征信息,再引入特征融合层进行信息融合;最后,将融合信息输入由掩码注意力-多头注意力结构构成的解码器,预测得到系统状态达到老化阈值的剩余寿命。实验结果表明,该Web系统剩余寿命预测方法与最优的SALSTM方法相比,均方根误差分别降低了12.0%、17.3%和13.2%,平均绝对误差分别降低了13.3%、21.0%和10.4%,证明了该方法的有效性。 相似文献
13.
针对传统手足口病(HFMD)发病趋势预测算法预测精度不高、未结合其他影响因素、预测时间较短等问题,提出结合气象因素使用长短时记忆(LSTM)网络进行长期预测的方法。首先,将发病序列通过滑动窗口的方式转化为网络的输入和输出;然后采用LSTM网络进行数据建模和预测,并使用迭代预测的方式获得较长期的预测结果;最后在网络中增加温度和湿度变量,比较这些变量对预测结果的影响。实验结果表明,加入气象因素能够提高模型的预测精度,所提模型在济南市数据集上的平均绝对误差(MAE)为74.9,在广州市数据集上的MAE为427.7,相较于常用的季节性差分自回归移动平均(SARIMA)模型和支持向量回归(SVR)模型,该模型的预测准确率更高。可见所提模型是HFMD发病趋势预测的一种有效的实验方法。 相似文献
14.
15.
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNN-LSTM模型.1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC.首先,通过一层一维卷积... 相似文献
16.
针对目前流数据存在数量巨大、生成迅速和概念漂移的特点,提出了一种基于长短期记忆(LSTM)网络和滑动窗口的流数据异常检测方法。首先采用LSTM网络进行数据预测,之后计算预测值与实际值的差值。对于每个数据,选择合适的滑动窗口,将滑动窗口区间内的所有差值进行分布建模,再根据每个差值在当前分布的概率密度来计算数据异常可能性。LSTM网络不仅可以进行数据预测,还可以边预测边学习,实时更新调整网络,保证模型的有效性;而利用滑动窗口可以使得异常分数的分配更为合理。最后使用在真实数据基础上制造的模拟数据进行了实验。实验结果验证了所提方法在低噪声环境下比直接利用差值进行检测和异常数据分布建模法(ADM)方法的平均曲线下面积(AUC)值分别提高了0.187和0.05。 相似文献
17.
针对现有跨领域情感分类方法中文本表示特征忽略了重要单词的情感信息,且在迁移过程中存在负迁移的问题,提出一种基于注意力机制的卷积-双向长短期记忆(AC-BiLSTM)模型的知识迁移方法。首先,利用低维稠密的词向量对文本进行向量表示;其次,采用卷积操作获取局部上下文特征之后,通过双向长短期记忆(BiLSTM)网络充分考虑特征之间的长期依赖关系;然后,通过引入注意力机制考虑不同词汇对文本的贡献程度,同时为了避免迁移过程中出现负迁移现象,在目标函数中引入正则项约束;最后,将在源领域产品评论训练得到的模型参数迁移到目标领域产品评论中,并在少量目标领域有标注数据上进行微调。实验结果表明,与AE-SCL-SR方法和对抗记忆网络(AMN)方法相比,AC-BiLSTM方法的平均准确率分别提高了6.5%和2.2%,AC-BiLSTM方法可以有效地提高跨领域情感分类性能。 相似文献