共查询到19条相似文献,搜索用时 62 毫秒
1.
近邻传播聚类(AP)方法是近年来出现的一种广受关注的聚类方法,在处理多类、大规模数据集时,能够在较短的时间得到较理想的结果,因此与传统方法相比具有很大的优势。但是对于一些聚类结构复杂的数据集,往往不能得到很好的聚类结果。通过分析数据的聚类特性,设计了一种可以根据数据结构自动调整参数的核函数,数据集在其映射得到的核空间中线性可分或几乎线性可分,对该核空间中的数据集进行近邻传播聚类,有效提高了AP聚类的精确度和速度。算法有效性分析以及仿真实验验证了所提算法在处理大规模复杂结构数据集上的性能优于原始AP算法。 相似文献
2.
3.
4.
5.
6.
近邻传递算法的快速、有效性体现在处理大的聚类问题上。采用图像低层特征,包括颜色、纹理和边缘特征,使用近邻传播算法初次聚类,将聚类结果的中心作为k-means的初始中心进行二次聚类。实验表明,二次聚类的正确率比一次聚类提高了将近10%,达到了95%。 相似文献
7.
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 相似文献
8.
多聚类中心近邻传播聚类算法(MEAP),在处理任意形状具有流形分布结构的数据时,往往得不到理想的聚类结果。为此,基于流形学习的思想,设计了一种全新的相似性度量,该相似性度量能够扩大位于同一流形中数据点间的相似性,同时缩小处于不同流形上数据点间的相似性,从而使得相似性矩阵能够准确地反映数据集内在的流形分布结构。将该相似性度量与MEAP相结合,提出基于流形结构的多聚类中心近邻传播聚类算法MS-MEAP(Manifold Structure based Multi-Exemplar Affinity Propagation),从而有效地拓展了算法处理任意形状具有流形分布结构数据集的能力,同时提高了算法的运行效率。在人工数据集与USPS手写体数据集上进行了实验,仿真实验结果及算法有效性分析证明,MS-MEAP算法相比于原算法在处理任意形状具有流形分布结构的数据时,具有更好的聚类性能。 相似文献
9.
基于MapReduce的分布式近邻传播聚类算法 总被引:2,自引:0,他引:2
随着信息技术迅速发展,数据规模急剧增长,大规模数据处理非常具有挑战性.许多并行算法已被提出,如基于MapReduce的分布式K平均聚类算法、分布式谱聚类算法等.近邻传播(affinity propagation,AP)聚类能克服K平均聚类算法的局限性,但是处理海量数据性能不高.为有效实现海量数据聚类,提出基于MapReduce的分布式近邻传播聚类算法——DisAP.该算法先将数据点随机划分为规模相近的子集,并行地用AP聚类算法稀疏化各子集,然后融合各子集稀疏化后的数据再次进行AP聚类,由此产生的聚类代表作为所有数据点的聚类中心.在人工合成数据、人脸图像数据、IRIS数据以及大规模数据集上的实验表明:DisAP算法对数据规模有很好的适应性,在保持AP聚类效果的同时可有效缩减聚类时间. 相似文献
10.
11.
对于手写字符识别过程中相似字符较多且相同字符存在大量不规则书写变形的问题,提出一种改进的仿射传播聚类算法加入手写字符识别过程中。该算法基于原始仿射传播(AP)聚类算法,将其与聚类评判函数Silhouette结合,通过AP算法迭代过程自适应地改变偏向参数以调整类别数,并且结合每次聚类质量得到最优聚类结果。基于手写汉字识别的实验结果表明,加入了原始AP算法的识别率比传统识别过程得到的识别率总体提高1.52%,而加入改进AP算法的识别率又比加入原始AP算法的识别率总体提高了1.28%。该实验结果验证了加入聚类算法于手写字符识别过程的有效性,而改进AP算法相比原始AP算法在收敛性和聚类质量上都有一定的提高。 相似文献
12.
基于近邻传播与密度相融合的进化数据流聚类算法 总被引:3,自引:0,他引:3
针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDenStream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两部分。不仅引进了能够体现数据流动态变化的微簇衰减密度以及在线动态维护微簇的删减机制,而且在对模型采用扩展的加权近邻传播(WAP)聚类进行模型重建时,还引进了异常点检测删除机制。通过在两种类型数据集上的实验结果表明,所提算法的聚类准确率基本能保持在95%以上,其纯度对比实验等其他相关测试都有较好结果,能够高实效、高质量、高效率地处理数据流数据聚类。 相似文献
13.
仿射传播聚类是一种快速有效的聚类方法。但对高维数据进行聚类时,由于数据信息的重叠,聚类结果往往会有较大误差。针对这个问题,提出了把主元分析(PCA)和仿射传播(AP)聚类相结合的PCA-AP算法,在保留原变量绝大部分信息的情况下对数据进行降维处理,然后在低维空间中用仿射传播聚类的方法进行聚类。由于剔除了冗余信息,算法得到的分类结果更加准确。实验结果表明该算法是有效的。 相似文献
14.
针对高校实际数据质量检测过程中数据集存在缺失值以及发现的函数依赖个数较少且不准确的问题,提出了一种结合近邻传播(AP)聚类算法和TANE算法的高校函数依赖发现方法(APTANE)。首先,对数据集中的中文字段进行列剖析,将中文字段值用对应的数值来表示;其次,使用AP聚类算法对数据集中的缺失值进行填补;最后,使用TANE算法从处理好的数据集中自动发现出满足非平凡、最小要求的函数依赖。实验结果表明,在使用AP聚类算法对真实的高校数据集进行修复之后,相比于直接使用函数依赖自动发现算法,发现的函数依赖个数增加到了80个,经过缺失值填补后所发现的函数依赖在表示字段间关联关系时也更加准确,减少了领域专家的工作量,提升了高校数据所拥有数据的质量。 相似文献
15.
基于模糊连接度的近邻传播聚类图像分割方法 总被引:1,自引:0,他引:1
针对现有近邻传播聚类图像分割方法分割精度低的问题,提出一种基于模糊连接度的邻近传播聚类(FCAP)图像分割算法。针对传统模糊连接度算法不能得出任意点对间模糊连接度的不足,结合最大生成树提出了全模糊连接度算法。FCAP算法先使用Normalized Cut超像素技术进行超像素分割,这些超像素可以看作数据点以及它们之间的模糊连接度;然后使用所提出的全模糊连接度算法计算超像素间的模糊连接度,根据模糊连接度和空间信息计算超像素的相似度;最后使用近邻传播(AP)聚类算法完成分割。实验结果表明,FCAP算法明显优于超像素处理后直接使用AP聚类算法进行分割的方法,并且优于无监督图像分割方法。 相似文献
16.
针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式--加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵。在谱映射过程中,采用Nystrom逼近策略近似估计相似性矩阵及其特征向量,大大减少了求解相似性矩阵的运算复杂度,降低了内存消耗。对得到的低维向量子空间采用一种新型的聚类算法--近邻传播聚类算法进行聚类,避免了传统谱聚类采用K-means算法对初始值敏感,易陷入局部最优的缺陷。实验表明该算法获得了比传统谱聚类算法更好的分割效果。 相似文献
17.
目前传统的室内指纹定位算法中存在以下几个问题,首先在构建指纹库时采用平均值的方式构造指纹库容易受到噪声点影响而降低定位精度,其次使用欧式距离衡量待定位点与指纹点之间的距离可能引入信号强度距离较近,物理距离较远的参考点参与估计待定位点的位置从而增大定位误差,以及当参考点数量较大时,由于K近邻算法的计算量较大,从而造成定位过程耗时较大,能源耗费较多的情况,除此之外,由于K近邻算法无法根据实际情况确定参与定位的参考点个数从而限制了定位系统的精确性和拓展性。针对上述问题,本文设计了一种基于近邻传播算法的动态自适应室内指纹定位算法。该算法在离线阶段对在每一个参考点采集的信号强度值使用方差滤波算法去除噪声值,然后利用加入了参考点物理信息的近邻传播算法对参考点进行聚类处理。在在线阶段,通过进行粗略定位和精确定位动态的估计待定位点的物理位置。经过实验证明,本文所提出的新算法较对比算法有较高的精确度和稳定度。 相似文献
18.
针对近邻传播(Affinity Propagation,AP)聚类算法存在运算复杂度高且未考虑数据点密度对聚类效果的影响的问题,提出一种改进的近邻传播聚类算法并应用于图像分割。首先,在度量数据点之间的相似性时,考虑到密度差异对数据点成为类代表点可能性的影响,利用密度聚类的思想设置偏向参数,同时引入数据点的空间邻近位置信息,充分利用图像信息,提高相似度矩阵构造的合理性,增强聚类的内聚性,并提高分割精度;其次,为降低计算相似度矩阵的复杂度,减小计算机内存开销,引入Nystr?m逼近策略求解相似度矩阵,提升了算法的效率。实验表明,改进后的算法与传统的近邻传播聚类算法相比获得了更好的图像分割效果。 相似文献