首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.  相似文献   

3.
Intracellular applications of ribozymes have been limited partly by the availability of suitable high-expression systems. For RNA effectors, consideration of an RNA virus vector system for delivery and expression is reasonable. We show that alphavirus replicons can be highly efficient nonintegrating ribozyme-expressing vectors. Using a hammerhead ribozyme targeted to a highly conserved sequence in the U5 region of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat, we demonstrate that a full-length 8.3-kb Semliki Forest virus ribozyme (SFVRz) chimeric RNA maintains catalytic activity. SFVRz is packaged into viral particles, and these particles transduce mammalian cells efficiently. SFVRz-transduced BHK cells were found to produce large amounts of genomic and subgenomic forms of ribozyme-containing RNAs that are functional in cleaving a U5-tagged mRNA. The RNase protection assay shows that HIV-1 U5-chloramphenicol acetyltransferase mRNA expressed intracellularly from an RNA polymerase II promoter is quantitatively eliminated in SFVRz-transduced BHK cells.  相似文献   

4.
All retroviruses (except the spumaretroviruses) contain a nucleocapsid (NC) protein that encodes one or two copies of the Zn2+-finger sequence -Cys-X2-Cys-X4-His-X4-Cys-. This region has been shown to be essential for recognition and packaging of the genomic RNA during virion particle assembly. Additionally, this region has been shown to be involved in early infection events in a wide spectrum of retroviruses, including mammalian type C [e.g., murine leukemia virus (MuLV)], human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus, and other retroviruses. Mutations in the two Zn2+-fingers of the NC protein of simian immunodeficiency virus strain Mne [SIV(Mne)] have been generated. The resulting virions contained the normal complement of processed viral proteins with densities indistinguishable from wild-type SIV(Mne). All of the mutants had electron micrograph morphologies similar to those of immature particles observed in wild-type preparations. RNA packaging was less affected by mutations in the NC protein of SIV(Mne) than has been observed for similar mutants in the MuLV and HIV-1 systems. Nevertheless, in vitro replication of SIV(Mne) NC mutants was impaired to levels comparable to those observed for MuLV and HIV-1 NC mutants; replication defective NC mutants are typically 10(5)- to 10(6)-fold less infectious than similar levels of wild-type virus. One mutant, DeltaCys33-Cys36, was also found to be noninfectious in vivo when mutant virus was administered intravenously to a pig-tailed macaque. NC mutations can therefore be used to generate replication defective virions for candidate vaccines in the SIV macaque model for primate lentiviral diseases.  相似文献   

5.
6.
Retroviruses encapsidate two molecules of genomic RNA that are noncovalently linked close to their 5' ends in a region called the dimer linkage structure (DLS). The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) constitutes the essential part of the DLS in vitro and is crucial for efficient HIV-1 replication in cell culture. We previously identified the DIS as a hairpin structure, located upstream of the major splice donor site, that contains in the loop a six-nucleotide self-complementary sequence preceded and followed by two and one purines, respectively. Two RNA monomers form a kissing loop complex via intermolecular interactions of the six nucleotide self-complementary sequence. Here, we introduced compensatory mutations in the self-complementary sequence and/or a mutation in the flanking purines. We determined the kinetics of dimerization, the thermal stabilities and the apparent equilibrium dissociation constants of wild-type and mutant dimers and used chemical probing to obtain structural information. Our results demonstrate the importance of the 5'-flanking purine and of the two central bases of the self-complementary sequence in the dimerization process. The experimental data are rationalized by triple interactions between these residues in the deep groove of the kissing helix and are incorporated into a three-dimensional model of the kissing loop dimer. In addition, chemical probing and molecular modeling favor the existence of a non-canonical interaction between the conserved adenine residues at the first and last positions in the DIS loop. Furthermore, we show that destabilization of the kissing loop complex at the DIS can be compensated by interactions involving sequences located downstream of the splice donor site of the HIV-1 genomic RNA.  相似文献   

7.
An amino acid substitution (D --> K) in the C3 region of HIV-1 gp120 has previously been shown to inhibit binding of virions to CD4+ cells. We have introduced the same mutation into the HIV-1 isolate LAV-I(BRU), in which the mutation is denoted D373K. Here we show that the D373K envelope protein is processed and incorporated into virus particles, but that D373K virions have no detectable infectivity (below 0.1% relative to wild type). When D373K and the wild-type envelope gene were cotransfected in 293 cells at a 4:1 ratio, the resultant infectivity of the HIV-1 supernatant was reduced more than 100-fold. When the same ratio of plasmids was tested in COS-1 cells the inhibition of HIV-1 was an order of magnitude less than observed in 293 cells. COS-1 and 293 cells differed in that only 293 cells displayed saturation of virus production with respect to the envelope protein. Our data fit a simple model: when virion formation is saturated with envelope protein, expression and incorporation of a defective envelope protein imply a corresponding dilution of wild-type protein on the surface of virions. The cooperative function of wild-type envelope proteins is subsequently compromised, and a trans-dominant inhibition of virus infectivity is observed.  相似文献   

8.
9.
10.
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

11.
12.
In human immunodeficiency virus type 1-infected cells, the efficient expression of viral proteins from unspliced and singly spliced RNAs is dependent on two factors: the presence in the cell of the viral protein Rev and the presence in the viral RNA of the Rev-responsive element (RRE). We show here that the HIV-1 Rev/RRE system can increase the expression of avian leukosis virus (ALV) structural proteins in mammalian cells (D-17 canine osteosarcoma) and promote the release of mature ALV virions from these cells. In this system, the Rev/RRE interaction appears to facilitate the export of full-length unspliced ALV RNA from the nucleus to the cytoplasm, allowing increased production of the ALV structural proteins. Gag protein is produced in the cytoplasm of the ALV-transfected cells even in the absence of a Rev/RRE interaction. However, a functional Rev/RRE interaction increases the amount of Gag present intracellularly and, more strikingly, results in the release of mature ALV particles into the supernatant. RCAS virus containing an RRE is replication-competent in chicken embryo fibroblasts; however, we have been unable to determine whether the particles produced in D-17 cells are as infectious as the particles produced in chicken embryo fibroblasts.  相似文献   

13.
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.  相似文献   

14.
Retroviruses are produced as immature particles containing structural polyproteins, which are subsequently cleaved by the viral proteinase (PR). Extracellular maturation leads to condensation of the spherical core to a capsid shell formed by the capsid (CA) protein, which encases the genomic RNA complexed with nucleocapsid (NC) proteins. CA and NC are separated by a short spacer peptide (spacer peptide 1 [SP1]) on the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein and released by sequential PR-mediated cleavages. To assess the role of individual cleavages in maturation, we constructed point mutations abolishing cleavage at these sites, either alone or in combination. When all three sites between CA and NC were mutated, immature particles containing stable CA-NC were observed, with no apparent effect on other cleavages. Delayed maturation with irregular morphology of the ribonucleoprotein core was observed when cleavage of SP1 from NC was prevented. Blocking the release of SP1 from CA, on the other hand, yielded normal condensation of the ribonucleoprotein core but prevented capsid condensation. A thin, electron-dense layer near the viral membrane was observed in this case, and mutant capsids were significantly less stable against detergent treatment than wild-type HIV-1. We suggest that HIV maturation is a sequential process controlled by the rate of cleavage at individual sites. Initial rapid cleavage at the C terminus of SP1 releases the RNA-binding NC protein and leads to condensation of the ribonucleoprotein core. Subsequently, CA is separated from the membrane by cleavage between the matrix protein and CA, and late release of SP1 from CA is required for capsid condensation.  相似文献   

15.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

16.
Targeting protein or RNA moieties to specific cellular compartments may enhance their desired functions and specificities. Human immunodeficiency virus type I (HIV-1) encodes proteins in addition to Gag, Pol, and Env that are packaged into virus particles. One such retroviral-incorporated protein is Vpr, which is present in all primate lentiviruses. Vpr has been implicated in different roles within the HIV-1 life cycle. In testing a new hypothesis in which viral proteins are utilized as docking sites to incorporate protein moieties into virions, we used the peptide phage display approach to search for Vpr-specific binding peptides. In the present studies, we demonstrate that most of the peptides that bind to Vpr have a common motif, WXXF. More importantly, we demonstrate that the WXXF motif of uracil DNA glycosylase is implicated in the interaction of uracil DNA glycosylase with Vpr intracellularly. Finally, a dimer of the WXXF motif was fused to the chloramphenicol acetyl transferase (CAT) gene, and it was demonstrated that the WXXF dimer-CAT fusion protein construct produces CAT activity within virions in the presence of Vpr as a docking protein. This study provides a novel potential strategy in the targeting of anti-viral agents to interfere with HIV-1 replication.  相似文献   

17.
The Vpr protein, encoded by the human immunodeficiency virus type 1 (HIV-1) genome, is one of the nonstructural proteins packaged in large amounts into viral particles. We have previously reported that Vpr associates with the DNA repair enzyme uracil DNA glycosylase (UDG). In this study, we extended these observations by investigating whether UDG is incorporated into virions and whether this incorporation requires the presence of Vpr. Our results, with highly purified viruses, show that UDG is efficiently incorporated either into wild-type virions or into Vpr-deficient HIV-1 virions, indicating that Vpr is not involved in UDG packaging. Using an in vitro protein-protein binding assay, we reveal a direct interaction between the precursor form of UDG and the viral integrase (IN). Finally, we demonstrate that IN-defective viruses fail to incorporate UDG, indicating that IN is required for packaging of UDG into virions.  相似文献   

18.
Genomic RNAs from retroviruses are packaged as dimers of two identical RNA molecules. In Moloney murine leukemia virus, a stem-loop structure (H1) located in the encapsidation domain Psi (nucleotides 215-564) was postulated to trigger RNA dimerization through base pairing between auto complementary sequences. The Psi domain also contains two other stem-loop structures (H2 and H3) that are essential for RNA packaging. Since it was suspected than H1 is not the only element involved in RNA dimerization, we systematically investigated the dimerization capacity of several subdomains of the first 725 nucleotides of genomic RNA. The efficiency of dimerization of the various RNAs was estimated by measuring their apparent dissociation constants, and the specificity was tested by competition experiments. Our results indicate that the specificity of dimerization of RNA nucleotides 1-725 is driven by motifs H1-H3 in domain Psi. To define the relative contributions of these elements, RNA deletion mutants containing different combinations of H1-H3 were constructed and further analyzed in competition and kinetic experiments. Our results confirm the importance of H1 in triggering dimerization and shed new light on the mechanism of dimerization. H1 is required to provide a stable dimer, probably through the formation of extended intermolecular interactions. However, H1-mediated association is a slow process that is kinetically enhanced by H3, and to a lesser extent by H2. We suggest that they facilitate the recognition between the two RNAs, most likely through their conserved GACG loops. Our results reinforce the idea that dimerization and packaging are two closely related processes.  相似文献   

19.
20.
Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Deltap6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Deltap6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Deltap6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Deltap6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Deltap6 and nucleic acid are not sufficient for the formation of normal-sized particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号