首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为解决由于碳纤维/树脂复合材料多钉连接结构中钉载分配状态和测试方法不同导致的钉载系数测试分散性不明确的问题,针对应变片和钉载矢量传感器两种测试方法,提出基于不确定度理论的钉载系数相对测量不确定度的计算模型,并计算两种测试方法对碳纤维X850/树脂复合材料单剪、双剪连接结构钉载系数的相对测量不确定度。结果表明,应变片测试方法中,单剪结构钉载系数无法准确测量,双剪结构钉载系数相对测量不确定度通常超过2.8%,且随结构中螺栓数目和应变片贴片角度偏差的增加而增大;钉载矢量传感器测试方法中,单剪、双剪结构钉载系数均可测试,且针对任意螺栓数目结构,其钉载系数相对测量不确定度最大不超过1.5%。   相似文献   

2.
进行了复合材料一铝合金三钉单搭连接单向拉伸试验,测量了层合板面内位移、应变和离面位移随载荷的变化关系,建立了复合材料多钉单搭连接的三维累积损伤有限元模型,计算与试验对比结果表明,该模型可模拟大范围损伤发生之前的承载特性。采用试验和数值模拟相结合的方法研究了复合材料一金属三钉单搭连接钉载分布情况,结果表明:试验用复合材料-铝合金三钉单搭连接,螺栓1承载比例最高,螺栓3次之,中间螺栓的承载比例最低,并且螺栓承载比例在加载过程中基本保持不变;随着金属连接板刚度的增加,螺栓1的承载比例增加,螺栓3承载比例降低,中间螺栓2的承载比例变化较小,层合板离面位移减小;金属板配合间隙变化对钉载分布影响很小,但层合板的离面位移随配合间隙的增大而增大。  相似文献   

3.
蔡启阳  赵琪 《复合材料学报》2021,38(12):4228-4238
通过有限元模拟与试验相结合的方式,研究环境温度和间隙对复合材料-金属混合结构连接钉载分配和强度的影响。分别建立双钉单剪和三钉单剪有限元模型,并在模型中综合考虑了接触、金属塑性和复合材料渐进损伤等因素,研究了不同温度和间隙情况下钉载的分配情况。研究表明,间隙对初始阶段钉载分配影响较大,但不影响塑性屈服阶段的钉载比例和承载能力;温度改变引起的热应力会带来额外的温度载荷,温度载荷对端部钉载影响较大,温度载荷与机械载荷叠加,会加剧端部钉载的分配不均。   相似文献   

4.
多钉连接钉载分配特性研究方法   总被引:2,自引:0,他引:2       下载免费PDF全文
利用金属-复合材料层合板紧固件多钉连接件开展拉伸载荷下钉载分配特性的试验和有限元分析研究。试验件为一列三钉单搭接和双搭接连接件。通过应变电测技术获得连接件典型截面应变分布, 再间接估算钉载分配比例。建立了试验件二维、三维有限元模型, 并计算获得应变和钉载分配结果。对比发现, 应变的计算值与实测值吻合, 但钉载分配的计算结果与实测结果存在较大偏差。分析表明: 基于表面应变测量估计钉载分配的方法不能反映连接件的附加弯矩对多钉钉载分配比例的影响; 采用经过应变测量结果验证的有限元模型, 通过数值计算确定钉载分配是一种可行的技术途径; 而应用简化的板-梁二维有限元模型计算钉载分配可以满足工程精度要求。  相似文献   

5.
为了分析含钉群复合材料结构的钉载分配及承载能力问题,首先对Globle Bolted Joint Model(GBJM)方法进行了改进,然后采用改进的方法对复合材料多钉连接结构的钉载分配和承载能力进行了预测,并与试验结果进行了比较。结果表明:当孔边复合材料未出现损伤时,该方法对多钉载荷分配的预测和试验结果比较接近;而对结构承载能力的预测,该方法偏于保守,比试验结果约低15%。同时该方法具有两个显著优点:一是计算结构钉载分配时效率高,和三维有限元模型相比提高约75%;二是能够对含钉群复合材料结构的失效载荷进行有效的预测。  相似文献   

6.
考虑间隙配合的复合材料钉载分配均匀化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对多钉连接中因复合材料脆性等因素导致结构中的钉载分配不均匀,以及接头在承载较大的钉位置易发生过早破坏的问题,提出了调整钉孔配合间隙改善钉载分配的不均匀性的优化方法。首先,基于弹簧质量模型,以钉孔间隙为设计变量,建立了多钉连接钉载分配的二次规划优化模型。然后,采用内点法对优化模型进行了求解,得到了优化模型的全局最优解。最后,以复合材料5钉双剪接头为例,对钉孔间隙进行了优化,将计算结果与有限元预测结果进行对比。结果表明:模型优化结果与有限元结果吻合较好,优化后最大钉载比例由41.1%降低到了20%。采用该模型可以高效、准确地实现复合材料多钉连接钉载分配比例的均匀化设计。   相似文献   

7.
刘坤良  铁瑛  李成  陈启军 《工程力学》2013,30(12):275-279
该文基于三维逐渐损伤理论,采用ANSYS的二次开发语言,建立了复合材料层合板多钉斜削搭接结构的三维有限元模型,考虑接触状态非线性和累积损伤过程非线性,并用牛顿-拉普森非线性迭代算法,对复合材料多钉斜削搭接结构从初始失效到最终失效的过程进行可视化模拟并对其连接强度进行了研究;数值模拟计算结果与文献结果进行比较,验证了本模型的正确性。分析结果得到:斜削程度不同、几何尺寸不同,连接结构的失效扩展过程不同;并且不同铺层失效形式不同;在一定程度上,随着斜削程度的降低,优化了钉载分配,初始失效载荷和最终失效载荷有所升高,提高了连接效率。  相似文献   

8.
连接区的设计是复合材料设计中一个很关键的环节, 而确定钉载分布又是多钉接头中的重要问题。本文基于位移法原理, 提出一种以有限元“超元”为基础的钉载分析计算方法, 避免了实验测定复合材料P-D曲线的困难, 同时由于“超元”技术的采用具有较高运算效率。本文方法对接头的几何外形、尺寸、钉的排列方式、外载及边界条件等没有限制。与试验及文献算例结果比较, 证明了本文方法正确、可靠。最后, 利用本文方法对多种情况钉载分配进行了参数研究, 得出一些规律性结论。  相似文献   

9.
接区的设计是复合材料设计中一个很关键的环节,而确定钉载分布又是多钉接头中的重要问题。本文基于位移法原理,提出一种以有限元“超元”为基础的钉载分析计算方法,避免了实验测定复合材料P-δ曲线的困难,同时由于“超元”技术的采用具有较高运算效率。本文方法对接头的几何外形、尺寸、钉的排列方式、外载及边界条件等没有限制。与试验及文献算例结果比较,证明了本文方法正确、可靠。最后,利用本文方法对多种情况钉载分配进行了参数研究,得出一些规律性结论。  相似文献   

10.
针对单钉单剪复合材料螺栓连接,研究了间隙与干涉2种配合方式对接头刚度的影响及其机制。通过与试验结果的对比,验证了所采用的有限元方法的有效性。结果表明:对于复合材料单钉单剪螺栓连接,间隙配合导致接头刚度变小, 3%钉直径的间隙量导致接头刚度下降16%~17%,并且随着间隙量的增大,接头刚度基本呈线性下降;而对于装配过程中没有产生孔边分层损伤的干涉配合连接件, 0.5%钉直径的干涉量使得接头刚度增加了约15%。配合方式不同,连接件孔周接触应力峰值方向及厚度方向接触应力分布不均匀的程度不同,进而影响了接头刚度。   相似文献   

11.
李想  谢宗蕻 《复合材料学报》2018,35(12):3377-3385
螺接修理在复合材料结构的临时性修理,尤其是战伤修理中应用较广泛。然而其修理设计过程较复杂,建模分析难度较大,难以满足工程快速定参的需要。本文针对含穿透损伤复合材料层合板的螺接修理问题,采用VB.NET结合p型有限元技术,开发了一套参数化的建模分析工具。分析工具通过界面读取修理结构的几何参数、螺栓布局、螺栓大小、载荷、材料属性等参数,自动创建有限元模型并进行求解。根据求解结果,分析工具可为用户提供修理结构的螺栓载荷、钉载比例、危险孔孔边应力等。另外,通过引入有限断裂力学,结合两级模型分析技术可预测得到修理结构的失效强度和失效位置。最后,采用典型算例对分析工具的有效性进行了验证。  相似文献   

12.
C/SiC复合材料螺栓螺牙承载能力   总被引:2,自引:0,他引:2       下载免费PDF全文
为了对C/SiC复合材料螺栓螺牙的承载能力进行评估,采用有限元法和刚度折减方法对C/SiC复合材料螺牙抵抗拉脱的能力进行了研究。结果表明:当齿合螺牙数大于6时,再增加齿合螺牙数已不能有效地提高螺牙的初始拉脱载荷;增大螺距会降低螺牙初始拉脱强度,因而也不能显著地提高螺牙的初始拉脱载荷;在螺距与螺栓直径之比保持常数的情况下,螺牙的初始拉脱载荷与螺栓直径的平方成正比;而螺牙的极限拉脱载荷则近似正比于齿合螺牙数、螺距及螺栓直径。  相似文献   

13.
基于航空发动机的高温气动载荷环境,对树脂传递模塑(RTM)工艺制备的TG800碳纤维/聚酰亚胺树脂复合材料带安装翻边和壳壁开口的圆柱壳机匣件开展了常温、200℃和260℃高温气动载荷下的仿真分析和承载性能试验。仿真计算得到复合材料机匣件的高应力水平发生在安装翻边和开口处。试验利用所设计的专用试验装置与机匣试验件合围成一套能够解耦内压和轴力的被试腔体结构,通过对被试腔体施加高温气体压力和机械静载联合模拟热气流载荷,相比传统的冲压胶囊加压方式,可以对机匣的翻边和开口处进行充分热压考核。常温、200℃和260℃承载试验后对机匣开口进行了无损检测,得到开口处的分层损伤区域随着载荷增大朝着正方和正圆的趋势扩大,260℃破坏试验得到TG800碳纤维/聚酰亚胺树脂复合材料机匣件的失效模式与传统金属机匣的筒体破裂不同,失效方式为安装翻边断裂。研究表明,RTM工艺TG800碳纤维/聚酰亚胺树脂复合材料结构件的力学性能在200℃以内具备良好的温度稳定性,安装翻边为复合材料机匣件在航空发动机热气流载荷下的薄弱区域,应作为机匣件减重设计的重要优化部位。   相似文献   

14.
设计了单L型(LS)及双L型(LD)两种重量相近的L型接头。采用试验与数值模拟相结合的方式对两种接头的拉伸失效机制进行了研究。通过自行设计的试验夹具在伺服液压试验机上将两种L型接头准静态加载至破坏,分析其破坏机制及应变分布。研究发现,两种L型接头存在不同的失效机制,在破坏阶段单L型接头表现出更好的延展性。单L型接头加载至峰值载荷时,在靠近加载侧的内侧螺栓孔附近首先出现破坏,随后损伤向外侧螺栓孔附近扩展,直至完全失效。双L型接头加载至峰值载荷的50%左右时,L型框体和L型片之间的胶膜首先发生破坏,随后载荷继续增加至峰值载荷时,L型框螺栓孔附近发生破坏,损伤向框体边缘扩展,载荷大幅下降。此外,两种接头的应变随载荷的增加存在不同的变化趋势。采用一种新型复合材料初始失效准则及刚度折减方法,编写用户自定义子程序(UMAT),结合内聚区模型建立复合材料L型接头的渐进损伤模型。基于ABAQUS软件进行计算,得到接头的预测失效载荷及破坏形式。结果表明:有限元分析所得复合材料L型接头的损伤位置及失效模式与试验吻合,预测载荷与试验值相差较小,证明了有限元模型的适用性。  相似文献   

15.
为研究复合材料夹芯梁在轴压作用下的屈曲、后屈曲特性及承载能力,进行了试验研究与有限元仿真。首先,开展了系列复合材料夹芯梁屈曲特性试验,研究了铺层比例、梁长度、表层厚度及芯层厚度等因素对其屈曲、后屈曲破坏模式及极限承载的影响;然后,基于非线性屈曲理论,采用三维内聚力界面单元模拟面芯脱粘,并引入初始预变形及材料损伤准则对复合材料夹芯梁在轴压下的屈曲特性及极限承载进行仿真研究。结果显示:界面脱粘是屈曲破坏的重要模式;仿真计算的极限承载与试验结果相比,误差控制在10%以内。所得结论表明该方法可有效预报复合材料夹芯梁的后屈曲路径、破坏模式及极限承载。   相似文献   

16.
《Composites Part A》1999,30(10):1215-1229
An experimental study was performed to assess the effects of clamp-up on the net-tension failure of laminated composite plates with bolt-filled holes. Graphite/epoxy prepreg of T800/3900-2 was selected for fabricating the laminates for the tests. The tensile strength and failure response of specimens with an open hole and a bolt-filled hole were evaluated. Both 100% bypass load (no bolt bearing load) and no bypass load (100% bolt bearing load) were considered during the experiments. X-radiographs were taken for specimens after pre-loading at different stress levels for the purpose of characterizing the failure modes and damage progression inside the composite.Experimental results showed that the bolt clamping force can significantly reduce the notch tensile strength of composite laminates which are prone to fiber-matrix splitting and delamination. A reduction in failure load of up to 20% was observed. Higher clamping pressure resulted in higher reductions of notch strength. However, for bolted joints which failed in a net-tension mode, clamping improved the joint strength regardless of the ply orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号