首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presented work applies mid-infrared attenuated total reflection (ATR) spectroscopy to the measurment of hydrogen peroxide in aqueous matrices. The performance of different ATR crystals mounted in flow cells was investigated in the presence of aqueous hydrogen peroxide solutions. Quantitative determination has been achieved by evaluation of specific OH stretching and deformation vibrations with linear correlation between peak areas or peak heights and hydrogen peroxide concentration in the range of 1-10% (weight in water). Important aspects such as chemical stability of the waveguide material and influences of pH and ionic strength on the performance are discussed. Feasibility for the investigation of real world samples is demonstrated by measuring industrial bleaching solutions with known concentrations of hydrogen peroxide fitting well with calibration graphs established with neat hydrogen peroxide solutions. The presented sensor system is capable of determining hydrogen peroxide within complex matrices and clearly corroborates the potential of providing an in situ measurement concept for on-line hydrogen peroxide detection.  相似文献   

2.
电化学沉积DLC膜及其表征   总被引:5,自引:1,他引:4  
采用电化学沉积方法,甲醇有机溶剂作碳源,在直流电源作用下在单晶硅表面沉积得到碳薄膜。薄膜不溶于苯、丙酮等有机溶剂,具有较高的硬度(16GPa左右),用AFM、Raman和FTIR分析手段对该薄膜表面形貌和结构进行表征,Raman和FTIR结果表明电化学沉积得到的是含氢的类金刚石碳薄膜。通过研究样品薄膜的XPS和XAES谱图特征,进一步证实薄膜是DLC薄膜,并用线性插入法估算出样品薄膜中SP^3的相对含量为60%,同时推测了电化学沉积DLC薄膜的生长机理。  相似文献   

3.
In this study, plasma-polymerized films are evaluated as enrichment membranes deposited at the surface of mid-infrared transparent waveguides for liquid-phase chemical sensing utilizing evanescent field absorption spectroscopy. Fluorocarbon films were deposited onto zinc selenide (ZnSe) waveguides from plasma-polymerized pentafluoroethane (CF(3)CHF(2)) vapor. Excellent optical transmission of ZnSe waveguides after plasma deposition confirms compatibility of the infrared transparent substrate with this low-temperature, solvent-free film deposition process. The liquid-phase enrichment characteristics for plasma membranes were investigated via evanescent field absorption spectroscopy of a model analyte (tetrachloroethylene); the limits of detection were below 300 ppb (v/v) in water. Plasma-polymerized films are known for their excellent mechanical and chemical stability, while offering tunable chemical and physical characteristics during the deposition process. Future application of this coating strategy for depositing robust enrichment membranes with tunable batch production capability imparts an attractive route toward application-oriented development of next-generation mid-infrared chemical sensors applicable in harsh environments.  相似文献   

4.
E. Liu  H.W. Kwek 《Thin solid films》2008,516(16):5201-5205
Diamond-like carbon (DLC) thin films used in this study were intended for their electrochemical properties. The DLC films were deposited by a filtered cathodic vacuum arc (FCVA) process on p-type silicon (100) substrates biased at different pulse voltages (0-2000 V). The chemical bonding structures of the DLC films were characterized with micro-Raman spectroscopy and the electrochemical properties were evaluated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The DLC films showed high impedance, high polarization resistance and high breakdown potential in a 0.5 M H2SO4 aqueous solution, which were attributed to the high sp3 content and uniformity of the films. The excellent chemical inertness of the DLC films made them promising corrosion resistant coating materials.  相似文献   

5.
A practically modified ATR configuration has been proposed for in situ electrochemical surface-enhanced IR absorption spectroscopy (SEIRAS) by sandwiching an ultrathin water interlayer between a hemicylindrical ZnSe prism and a Si wafer as an integrated window. This new ATR optics significantly enhances the throughput of an effective IR beam across the ZnSe/gap/Si/metal film, enabling high-quality spectral fingerprints down to 700 cm(-1) to be readily detected at larger incidence angles without compromising the electrochemical feasibility and stability of metallic films deposited on Si. The advantages of this modified ATR-SEIRAS have been initially applied to explore two selected systems: wide-ranged in situ ATR-SEIRA spectra provided strong evidence in support of the formate intermediate pathway for methanol electrooxidation at the Pt electrode in an acid solution; in addition, new spectral fingerprints revealed comprehensive orientational information about of the p-nitrobenzoate species at Pt electrode as a result of the dissociative adsorption of p-nitrobenzoic acid molecules from an acid solution.  相似文献   

6.
代海洋  陈镇平  程学瑞  翟凤潇  苏玉玲 《功能材料》2012,43(12):1643-1646,1650
分别以氩气-甲烷、氩气-乙炔为辅助气体,高纯石墨为靶材,利用中频脉冲非平衡磁控溅射技术制备了类金刚石薄膜.采用Raman光谱、X射线光电子能谱、纳米压痕测试仪、原子力显微镜对所制备类金刚石薄膜的键结构、机械性能、表面形貌进行了分析.Raman光谱和X射线光电子能谱测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜中sp3杂化键的含量比以氩气-乙炔为辅助气体制备的类金刚石薄膜的高.纳米压痕测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜的纳米硬度比以氩气-乙炔为辅助气体的高.原子力显微镜测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜的RMS表面粗糙度比以氩气-乙炔为辅助气体的低.以上结果说明辅助气体组成对类金刚石薄膜的键结构、机械性能、表面形貌有较大的影响.  相似文献   

7.
采用电化学方法,以分析纯的异丙醇溶液作为碳源,低温(60~70℃)常压条件下,在(100)硅片上沉积了类金刚石薄膜。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、拉曼光谱仪(Raman)和傅里叶变换红外光谱仪(FTIR)表征了薄膜的表面形貌和结构。结果表明,电解异丙醇溶液可以获得表面均匀致密且sp3碳含量较高的含氢类金刚石薄膜。  相似文献   

8.
Aluminum doped diamond-like carbon (DLC:Al) thin films were deposited on n-Si(100) substrates by co-sputtering a graphite target under a fixed DC power (650 W) and an aluminum target under varying DC power (10-90 W) at room temperature. The structure, adhesion strength and surface morphology of the DLC:Al films were characterized by X-ray photoelectron spectroscopy (XPS), micro-scratch testing and atomic force microscopy (AFM), respectively. The corrosion performance of the DLC:Al films was investigated by means of potentiodynamic polarization testing in a 0.6 M NaCl aqueous solution. The results showed that the polarization resistance of the DLC:Al films increased from about 18 to 30.7 k(omega) though the corrosion potentials of the films shifted to more negative values with increased Al content in the films.  相似文献   

9.
This article summarizes our progress made on an aqueous chemical solution deposition method used for the deposition of photocatalytically active TiO2 thin films. Starting from Titanium(IV)butoxide we achieved a stable titanium precursor solution containing titanium-peroxo compounds by reaction between Titanium(IV)butoxide and hydrogen peroxide. We were able to deposit anatase TiO2 films with good optical transparency and abrasion resistance. Dip-coating was used to deposit thin films on glass substrates from the solution. The occurring reaction mechanism was examined via thermal analysis, mass spectrometry and Raman spectroscopy. Decomposition of organic polluents was confirmed by the breakdown of ethanol. The obtained results show promising possibilities of this low-carbon containing synthesis method towards transparent, photocatalytic coatings. Presence of carbon was minimized by avoiding organic complexing agents. These materials are of great importance in the synthesis of self-cleaning materials.  相似文献   

10.
Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.  相似文献   

11.
采用微波等离子体化学气相沉积系统存钛/硅基板上沉积类金刚石薄膜,并利用拉曼光谱仪、扫瞄式电子显微镜及原子力显微镜研究了氢等离子体前处理及快速退火后处理对类金刚石薄膜场发射特性之影响.在沉积类金刚石薄膜之前,钛/硅基板使用了两种前处理技术:第一种为研磨金刚石粉末,第二种为研磨金刚石粉末后外加氢等离子体刻蚀处理.成长类金刚石薄膜后进行快速退火处理.发现不论是氢等离子体前处理还是快速退火后处理皆能改善场发射特性,其中经退火后处理的场发射特性比氢等离子体前处理的场发射特性改善更明显.其因之一在于快速退火后处理可在类金刚石薄膜表而形成sp2丛聚,提供了很多的场发射子,也同时增加了表面粗糙度;另一个原因可能是在快速退火后处理期间会使类金刚石薄膜进一步石墨化,因而提供了许多电子在通过类金刚石薄膜时的传输路径.研究结果表明:利用适当的前后处理技术可改进类金刚石薄膜的场发射特性,进而做为冷阴极材料之应用.  相似文献   

12.
Diamond like carbon (DLC) films received considerable interest due to outstanding mechanical and tribological properties as well as chemical inertness and hydrophobicity. That combination is particularly interesting for possible application of the DLC as anti-sticking layers in novel lithographic techniques such as nanoimprint lithography, because Si, quartz and Ni - the most often used materials for imprint stamp formation - have high surface energy and, as a result, bad anti-adhesive properties. In present study, SiOx containing DLC thin films were synthesized from hexamethyldisiloxane vapor and hydrogen gas mixture by direct ion beam deposition. Anti-sticking properties of the grown DLC thin films were evaluated measuring surface contact angle with water. Chemical composition and structure of the deposited films were investigated by X-ray photoelectron spectroscopy and FTIR spectrometry. Morphology of the films was measured by atomic force microscopy. Effects of hexamethyldisiloxane flux on structure, anti-sticking properties and surface morphology of the SiOx containing DLC thin films were defined.  相似文献   

13.
将磁控溅射物理气相沉积(MS-PVD)和电子回旋共振-微波等离子体增强化学气相沉积(ECR—PECVD)技术相结合,在铜基体上通过制备两种不同的过渡层,成功地沉积了类金刚石膜。拉曼光谱结果分析表明,所制备的碳膜都具有典型的类金刚石结构特征。通过原子力显微镜对薄膜的微观形貌进行分析,采用纳米压痕测量薄膜的硬度和模量。并对Ti/TiC过渡层和Si/SixNy过渡层上沉积的类金刚石薄膜进行了研究对比。  相似文献   

14.
Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study.  相似文献   

15.
Li Z  Meng F  Liu X 《Nanotechnology》2011,22(13):135302
Here we have developed a convenient method to fabricate wettability controllable surfaces that can be applied to various nanostructured surfaces with complex shapes for different industrial needs. Diamond-like carbon (DLC) films were synthesized on titanium substrate with a nanowire structured surface using plasma immersion ion implantation and deposition (PIII&D). The nanostructure of the DLC films was characterized by field emission scanning electron microscopy and found to grow in a rippling layer-by-layer manner. Raman spectroscopy was used to investigate the different bonding presented in the DLC films. To determine the wettability of the samples, water contact angles were measured and found to vary in the range of 50°-141°. The results indicated that it was critical to construct a proper surface topography for high hydrophobicity, while suitable I(D)/I(G) and sp2/sp3 ratios of the DLC films had a minor contribution. Superhydrophobicity could be achieved by further CF? implantation on suitably structured DLC films and was attributed to the existence of fluorine. In order to maintain the nanostructure during CF? implantation, it was favorable to pre-deposit an appropriate carbon content on the nanostructure, as a nanostructure with low carbon content would be deformed during CF? implantation due to local accumulation of surface charge and the following discharge resulting from the low conductivity.  相似文献   

16.
In this work, we report on the investigation of the effect of dispersion of zinc selenide (ZnSe) nanocrystallites into polystyrene (PS) and silica (SiO2) thin films on their structural, morphological and photoluminescence properties. The ZnSe/PS nanocomposites thin films were synthesized by a direct dispersion of ZnSe crystallites into polymers solution, whereas the ZnSe–SiO2 films were prepared on glass substrates by the sol–gel dip-coating technique. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-rays (EDX), UV–visible spectrophotometry and photoluminescence spectroscopy (PL) techniques have been used to study the structural, morphological and optical properties of the prepared nanocomposite thin films. XRD patterns have demonstrated the incorporation of cubic ZnSe in both organic and inorganic matrices. SEM micrographs have indicated that ZnSe dispersion in the films is homogeneous. UV–visible absorption spectra of the nanocomposite thin films have put into evidence that the dispersion of ZnSe nanocrystals in the thin film matrices improved their optical absorption. Room temperature PL spectra have shown that the addition of ZnSe enhanced the UV emission of PS and all the emission of SiO2 thin films.  相似文献   

17.
Diamond-like carbon (DLC) films were successfully prepared on glass substrates and surfaces of selenium drums via radio frequency plasma enhanced chemical vapor deposition method. The microstructure, surface morphology, hardness, film adhesion, and tribological properties of the films were characterized and evaluated by X-ray photoelectron spectroscopy, atomic force microscopy, and micro-sclerometer and friction-wear spectrometer. The results showed that DLC films have smooth surfaces, homogeneous particle sizes, and excellent tribological properties, which can be used to improve the surface quality of the selenium drums and prolong their service life.  相似文献   

18.
In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH4) and hydrogen (H2) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp3 content is decreased from 75.2% to 24.1% while the sp2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.  相似文献   

19.
Diamond-like carbon (DLC) films were successfully prepared on glass substrates and surfaces of selenium drums via radio frequency plasma enhanced chemical vapor deposition method. The microstructure, surface morphology, hardness, film adhesion, and tribological properties of the films were characterized and evaluated by X-ray photoelectron spectroscopy, atomic force microscopy, and micro-sclerometer and friction-wear spectrometer. The results showed that DLC films have smooth surfaces, homogeneous particle sizes, and excellent tribological properties, which can be used to improve the surface quality of the selenium drums and prolong their service life.  相似文献   

20.
等离子体源离子注入法制备类金刚石薄膜   总被引:2,自引:0,他引:2  
用等离子体源注入(PSII)在Si(100)上制备类金刚石膜,放电气体采用CH4,用微波电子回旋共振(ECR)产生等离子体。将-20~-30kV的高压加在衬底上,来提高离子的能量。通过Raman光谱和FT-IR光谱检测了类金刚石膜的化学组成及状态,并对其机械性能和表面形貌进行了检测。结果显示,硅片硬度和摩擦因数得到了改善,用PSII能够制备出性能优良的膜,可以将其应用到微电子器件(MEMS)上去。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号