首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al-doped ZnO (AZO) thin films were deposited on p- type Si(100) substrate by r.f magnetron sputtering at 200, 300 and 400 °C substrate temperatures. The deposited films were annealed in air atmosphere for 1 h at temperatures of 700, 800 and 900 °C. The deposition temperature and post-deposition annealing effects on structural and optical properties of the AZO samples were analyzed using X-ray diffraction, atomic force microscope and photoluminescence (PL). After annealing, the value of full width half maximum of the diffraction peaks was decreased as well as, the intensity of visible and strong UV PL emission peaks were increased with temperature. However, the deep-level emission related with zinc point defects was removed by annealing of the samples. Results revealed that all of the as-deposited and annealed AZO films have hexagonal structure along (002) direction and their crystallinity were improved with the increased deposition and post-growth annealing temperatures. In addition, the surface roughness and the particle size of the films were increased with increased deposition and annealing temperatures.  相似文献   

2.
The effect of annealing temperature on the structural morphology and optical properties of preferential nonpolar plane orientated ZnO thin films on Si (100) substrates by single source chemical vapor deposition (SSCVD) was investigated. The structural and morphological properties of the films were characterized by X-ray diffraction (XRD) and atomic force microscope (AFM) measurements respectively. All the ZnO films annealed at the selected temperatures (500–800 °C) exhibiting ab axis orientation, but with preferential nonpolar (100) plane orientation. It is found that the intensity of the (100) peak depends strongly on the annealing temperature, while that of (101) peak shows a variation in a very small scale. The surface morphology demonstrates that the film is of the uniform grains except for that annealed at 800 °C, for the aggregation of the ZnO particles occurred. The film shows a superior smooth surface annealed at 600 and 700 °C in comparison with other thermal annealed. It is also found from the photoluminescence(PL) measurements that the film annealed at 700 °C exhibits the lowest deep-level emission(DLE). However, the intensity of the near band edge emissions (NBE) and DLE show a wavelike variation, which are consistent to the variation of the intensity of (100) peak in the XRD results.  相似文献   

3.
Dislocations generated by indentation and subsequent annealing at elevated temperatures up to 800 °C in high quality (0001) wafers of ZnO single crystals were investigated by transmission X-ray topography and photoluminescence. Damages induced by indentation in ZnO wafers were guessed to lead to dislocated regions from X-ray topographic images. PL intensities of 3.36 eV near-band edge peak and 2.4 eV deep emission band in ZnO decreased drastically, with increasing in annealing temperature up to 800 °C, irrespective of dislocated or non-dislocated regions. The development of a new emission band 2.8–3.0 eV was found in non-damaged ZnO through annealing at 700 and 800 °C, which suggests that dislocations suppress the development of the new peak.  相似文献   

4.
ZnO thin films with ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si(100) substrates. Before the growth of the ZnO thin films, the ZnO buffer layers were deposited on the Si substrates for 20 minutes and then annealed at the different substrate temperature ranging from 600 to 800 degrees C in oxygen plasma. The structural and optical properties of the ZnO thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and room-temperature (RT) photoluminescence (PL). A narrower full width at half maximum (FWHM) of the XRD spectra for ZnO(002) and a larger grain are observed in the samples with the thermal annealed buffer layers in oxygen plasma, compared to those of the as-grown sample. The surface morphology of the samples is changed from rugged to flat surface. In the PL spectra, near-band edge emission (NBEE) at 3.2 eV (380 nm) and deep-level emission (DLE) around 1.77 to 2.75 eV (700 to 450 nm) are observed. By increasing the annealing temperatures up to 800 degrees C, the PL intensity of the NBEE peak is higher than that of the as-grown sample. These results imply that the structural and optical properties of ZnO thin films are improved by the annealing process.  相似文献   

5.
Optical characterization of ZnO thin films deposited by Sol-gel method   总被引:1,自引:0,他引:1  
In this paper, ZnO thin film is deposited on Pt/TiO2/SiO2/Si substrate using the sol-gel method and the effect of annealing temperature on the structural morphology and optical properties of ZnO thin films is investigated. The ZnO thin films are crystallized by the heat treatment at over 400°C. The ZnO thin film annealed at 600°C exhibits the greatest c-axis orientation and the Full-Width-Half-Maximum (FWHM) of X-ray peak is 0.4360°. A dense ZnO thin film is deposited by the growth of uniform grains with the increase of annealing temperature but when the annealing temperature increases to 700°C, the surface morphology of ZnO thin film becomes worse by the aggregation of ZnO particles. In the results of surface morphology of ZnO thin film using atomic force microscope (AFM), the surface roughness of ZnO thin film annealed at 600°C is smallest, that is, approximately 1.048 nm. For the PL characteristics of ZnO thin film, it is observed that ZnO thin film annealed at 600°C exhibits the greatest UV (ultraviolet) exciton emission at approximately 378 nm, and the smallest visible emission at approximately 510 nm among ZnO thin films annealed at various temperatures. It is deduced that ZnO thin film annealed at 600°C is formed most stoichiometrically, since the visible emission at approximately 510 nm comes from either oxygen vacancies or impurities.  相似文献   

6.
退火温度对磁控溅射SiC薄膜结构和光学性能的影响   总被引:1,自引:0,他引:1  
首先采用射频磁控溅射法在单晶Si(100)衬底上沉积制备了SiC薄膜,然后将所制备的薄膜试样分别在600,800和1 000℃氩气氛中退火120 min;采用X射线衍射仪和红外吸收光谱仪分析了薄膜的结构随退火温度的变化,采用荧光分光分度计研究了薄膜的发光性能随退火温度的变化。结果表明:室温制备的SiC薄膜为非晶态,经600℃退火后薄膜结晶,且随着退火温度的升高,薄膜的结晶程度越来越好,并且部分SiC结构发生了由α-SiC到β-SiC的转变;所制备的SiC薄膜在384和408 nm处有两个发光峰,且两峰的强度均随退火温度的升高逐渐变强,其中384nm处的峰源自于SiC的发光,408 nm处的峰源自于碳簇的发光。  相似文献   

7.
SiC/ZnO nanocomposites were prepared by radio frequency alternate sputtering followed by annealing in N2 ambient. Well-crystallized ZnO matrix was obtained after annealed at 750 °C according to X-ray diffractometer patterns. Transmission electron microscopy analyses indicated that the SiC thin layer aggregated to form SiC nanoclusters with the average size of 7.2 nm when the annealing temperature was 600 °C. When the annealing temperatures increased above 900 °C, some of the SiC nanoclusters changed into SiC nanocrystals and surfacial atoms of the SiC nanoparticles were surrounded by a layer of SiO x (x ≤ 2) according to the Fourier transform infrared spectrums. The SiC/ZnO nanocomposites annealed at 750 °C exhibit strong photoluminescence bands ranging from 250 to 600 nm. UV light originates from the near band edge emission of ZnO and the blue emission peaked at around 465 nm (2.7 eV) may be due to the formation of emission centers caused by the defects in Si–O network, while the green-emission peak at around 550 nm (2.3 eV) may be attributed to the deep level recombination luminescence caused by the vacancies of oxygen and zinc.  相似文献   

8.
The near-infrared emission from Er and Si codoped ZnO film, synthesized by cosputtering from separated Er, Si, and ZnO targets, has been investigated. By building the multilayer film structure, controlling the Er concentration, and optimizing the annealing condition, the intensity of Er3+ related 1.53 μm photoluminescence (PL), which originates from the transition of Er3+: 4I13/2 → 4I15/2, can be modulated. It is shown that the maximum intensities of Er3+ related 1.53 μm PL are obtained when the Si:ZnO/Er:Si:ZnO/Si:ZnO sandwiched multilayer film and the alternate Er:ZnO/Si:ZnO multilayer film were annealed at 1000 °C and 950 °C, respectively. The Er3+ related 1.54 μm PL intensity of the multilayer film is higher than that of the Er:ZnO monolayer film. This can be attributed to the presence of the silicon nanocrystals that could act as sensitizers of Er3+ ions in the multilayer film. The PL of the sandwiched multilayer film and the alternate multilayer film were measured under different temperatures (15-300 K). The sandwiched multilayer film exhibits a nonmonotonic temperature dependence as well as the alternate multilayer film, which differs from that of Er-doped ZnO as previously reported.  相似文献   

9.
Silicon carbonitride (SiCN) films were prepared by means of reactive magnetron sputtering of a sintered SiC target on n-type Si (1 0 0) substrates in the reactant gas of nitrogen, and then the films were respectively annealed at 600, 800 and 1100 °C for 5 min in nitrogen ambient. The films were characterized by energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence (PL) spectrophotometry. Intense PL peaks at 370, 400 and 440 nm were observed at room temperature. The results show that annealing temperature and composition play an important role in the structures and PL properties of the films. The annealing temperature of 600 °C favors the formation of the SiC (1 0 9) crystal in the SiCN films, and results in a maximal PL peak. The intensity of the 440 nm PL peak can be improved by increasing the abundance of the Si-C bond.  相似文献   

10.
Si nanocrystallites thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition (PLD) using a Nd:YAG laser.After deposition, samples were annealed in several environmental gases at the temperature range from 400 to 800 °C. Strong violet-indigo photoluminescence has been observed at room temperature (RT) from nitrogen ambient-annealed Si nanocrystallites. The variation of photoluminescence (PL) properties of Si nanocrystallites thin films has been investigated depending on annealing temperatures. As the results of PL and high-resolution transmission electron microscope (HRTEM) measurements, we could suggest that the origin of violet-indigo PL from the films was related to the quantum size effect of Si nanocrystallites.  相似文献   

11.
Ge doped ZnO films were deposited on Si substrates by sputtering technique. With the increasing annealing temperature, the crystal quality of samples becomes gradually better and the phase transition can be observed at annealing temperature of 600°C. X-ray photoelectron spectroscopy results show the incorporation of Ge into the ZnO films with 14·81 at-%Ge content. Fourier transform infrared spectroscopy absorption spectra of samples annealed at above 600°C display vibration mode of ν (ZnO4) and ν (GeO4) in Zn2GeO4. The enhancement of ultraviolet emission intensity should be attributed to the yielded mass holes caused by Ge doping and the rising crystal quality. The sample annealed at 800°C displays the strongest blue emission due to the native defects in Zn2GeO4 films or/and surface defects.  相似文献   

12.
Crystalline zinc oxide (ZnO) nanostructures have been grown on Si substrates by means of Plasma Based Ion Implantation and Deposition (PIII&D) at a temperature of about 300 °C and in the presence of an argon glow discharge. In the process a crucible filled with small pieces of metallic zinc plays the role of the anode of the discharge itself, being polarized by positive DC voltage of about 400 V. Electrons produced by thermionic emission by an oxide cathode (Ba, Sr, Ca)O impact this crucible, causing its heating and vaporization of Zn. Partial ionization of Zn atoms takes place due to collisions with plasma particles. High negative voltage pulses (7 kV/40 μs/250 Hz) applied to the sample holder causes the implantation of metallic zinc into Si surface, while Zn deposition happens between pulses. After annealing at 700 °C, strong UV and various visible photoluminescence bands are observed at room temperature, as well as the presence of ZnO nanoparticles. The coated surface was characterized in detail using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. XRD indicated the presence of only ZnO peaks after annealing. The composition analysis by EDS revealed distinct Zn/O stoichiometry relation depending on the conditions of the process. AFM images showed the formation of columns in the nanoscale range. Topography viewed by SEM showed the formation of structures similar to cactus with nanothorns. Depth analysis performed by XPS indicated an increase of concentration of metallic Zn with increasing depth and the exclusive presence of ZnO for outer regions. PIII&D allowed to growing nanostructures of ZnO on Si without the need of a buffer layer.  相似文献   

13.
We have investigated metal-ferroelectric-insulator semiconductor (MFIS) structures with lanthanum substituted bismuth titanate (BLT) as a ferroelectric layer and lanthanum oxide (LO) or zirconium silicate (ZSO) as an insulating buffer layer between BLT and Si substrate. The morphology of BLT films deposited on LO or ZSO oxide was not changed due to the good thermal stability of LO and ZSO films. But an interface reaction between BLT and buffer layer started at high annealing temperature (750 °C), which was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The maximum memory window was 3.59 V at a sweep voltage of 7 V with the LO film annealed at 650 °C and a thickness of 5 nm. With BLT/LO annealed at 750 °C, the window was decreased due to the reaction between the BLT film and LO. The memory window was about 1 V lower with a ZSO film because ZSO film has a lower dielectric constant than LO film. The MFIS structure annealed at 750 °C had a lower leakage current density because the electrical properties of the buffer layer (La oxide or Zr silicate) were improved by the thermal process.  相似文献   

14.
Indium rich (In-rich) InGaN films were grown on Ge (111) substrate by plasma assisted molecular beam epitaxy with thin GaN as a buffer layer. The effects of annealing temperature and annealing time on the structural properties of In-rich InGaN films were investigated by X-ray diffraction (XRD). XRD results indicate that the as-grown InGaN films annealed at different temperatures for 1 min and 1 h respectively did not improve the film crystalline quality. But with the annealing at 750 °C and 800 °C for 1 min respectively the metallic indium was desorbed from the InGaN structure. The InGaN films annealed at higher than 660 °C for 1 h also showed the indium desorption. The InGaN film has the best film quality after annealed at 660 °C for 6 h with the full-width at half-maximum of InGaN (002) peak to be 879 arcsec. The InGaN crystalline quality started to degrade after annealed at the temperatures higher than 660 °C for 6 h.  相似文献   

15.
Zinc oxide (ZnO) thin films were deposited on (100) Si substrates by sol-gel technique. Zinc acetate was used as the precursor material. The effect of different annealing atmospheres and annealing temperatures on composition, structural and optical properties of ZnO thin films was investigated by using Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy and photoluminescence (PL), respectively. At an annealing temperature of 400°C in N2 for 2 h, dried gel films were propitious to undergo structural relaxation and grow ZnO grains. ZnO thin film annealed at 400°C in N2 for 2 h exhibited the optimal structure and PL property, and the grain size and the lattice constants of the film were calculated (41.6 nm, a = 3.253 ? and c = 5.210 ?). Moreover, a green emission around 495 nm was observed in the PL spectra owing to the oxygen vacancies located at the surface of ZnO grains. With increasing annealing temperature, both the amount of the grown ZnO and the specific surface area of the grains decrease, which jointly weaken the green emission. Translated from Journal of Lanzhou University (Natural Science), 2006, 42(1): 67–71 [译自: 兰州大学学报 (自然科学版)]  相似文献   

16.
Two sets of ZnMgO thin films have been fabricated on Si (111) substrates by RF magnetron sputtering, and were annealed at air atmosphere afterwards. The effects of annealing temperature and time on structural and optical properties were also characterized by X-ray diffraction, scanning electron microscopy and photoluminescence (PL) spectra. For samples fabricated at a lower temperature (200 °C, defined as samples I), the experimental results revealed that only hexagonal phase was observed for the films annealed at the temperature range from 180 to 420 °C, and the best crystal quality for the films was found at 240 °C. For samples synthesized at 220 °C (defined as samples II), the crystal structures exhibited anneal-time dependent. The experimental results revealed coexistence of hexagonal and cubic phase when they were annealed at a set temperature of 220 °C with the different annealing time, and the best one can be observed when the anneal time was 30 min. PL spectra showed blue shift for UV peak with the increase of annealing temperature for samples I, and the UV emission occurred red shift and then blue shift when the anneal time increased from 20 to 30 min for samples II.  相似文献   

17.
Silicon carbon boron nitride (SiCBN) thin films were synthesized by reactive co-sputtering of silicon carbide (SiC) and boron nitride (BN) targets. As-deposited samples show distinct photoluminescence (PL) peaks at 465, 483 and 497 nm. The films were annealed in dry oxygen ambient at different temperatures to investigate the effect of annealing on film properties. Subsequent measurements on the annealed samples show diminished PL peak intensities. X-ray diffraction analysis shows that the as-deposited films are amorphous in nature and there is no change in the microstructure even after high temperature annealing. Surface characterization of the films by X-ray photoelectron spectroscopy reveals change in chemical composition at different annealing temperatures. Carbon concentrations in the films are sensitive to annealing temperatures and could cause the change in photoluminescence properties.  相似文献   

18.
Undoped ZnO films were grown on a c-plane sapphire by plasma-assisted molecular-beam epitaxy technique, and subsequently annealed at 200-500 °C with steps of 100 °C in water vapour and hydrogen ambient, respectively. It is found that the c-axis lattice constant of the ZnO films annealed in hydrogen or water vapour at 200 °C increases sharply, thereafter decreases slowly with increasing annealing temperature ranging from 300 °C to 500 °C. The stress in the as-grown ZnO films was more easily relaxed in water vapour than in hydrogen ambient. Interestingly, the controversial luminescence band at 3.310 eV, which is often observed in photoluminescence (PL) spectra of the ZnO films doped by p-type dopants, was observed in the PL spectra of the annealed undoped ZnO films and the PL intensity increases with increasing annealing temperature, indicating that the 3.310 eV band is not related to p-type doping of ZnO films. The electron concentration of the ZnO films increases sharply with increasing annealing temperature when annealed in hydrogen ambient but decreases slowly when annealed in water vapour. The mechanisms of the effects of annealing ambient on the properties of the ZnO films are discussed.  相似文献   

19.
《Thin solid films》2002,402(1-2):302-306
The structure and photoluminescence (PL) at room temperature of ZnO films deposited on Si(111) substrates by metal-organic chemical vapor deposition (MO-CVD) using diethylzinc (DEZ) and CO2 was investigated. It was found that these properties strongly depend on growth temperature and pressure. ZnO films can be deposited only at low pressure and in the temperature region of 500–650°C. The samples grown at certain conditions can generate stronger luminescence of ZnO. When the growth temperature increased to 650°C, the ZnO2 phase was observed in X-ray diffraction (XRD) patterns of the samples. This characteristic became evident after the samples annealed. Appearance of a ZnO2 phase results in production of a new emission band centered at 575 nm in the PL spectrum at room temperature, and the green emitting band also disappears.  相似文献   

20.
The effect of tungsten coating on the degradation of the relaxation time of photoconductivity in Czochralski Si upon annealing was studied. It was found that the concentration of process-induced defects in tungsten-coated Si annealed at 800 and 900°C exceeded that in uncoated samples. Moreover, the annealed tungsten-coated samples showed stronger temperature dependences of the electron capture cross section of these defects, which suggests that the defects produced in these samples differ from those in uncoated Si. No additional recombination channels were found in the tungsten-coated sample annealed at 1000°C as compared to the uncoated samples. The resistivity and conductivity type of tungsten-coated Si remained unchanged upon annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号