首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, fatigue tests were conducted on a zirconium-based bulk metallic glass (BMG), BMG-11 (Zr–10Al–5Ti–17.9Cu–14.6Ni, atomic percent), in air and vacuum to elucidate the possible environmental effects. In air, the fatigue endurance limit and the fatigue ratio were found to be 907 MPa and 0.53, respectively. These values are better than many conventional high-strength crystalline alloys. Unexpectedly, the fatigue lifetimes in vacuum were found to be lower than in air. Additional testing indicated that dissociation of residual water vapor to atomic hydrogen in the vacuum via a hot-tungsten-filament ionization gauge, and subsequent hydrogen embrittlement of the BMG-11, could have been a factor causing the lower fatigue lifetimes observed in vacuum.  相似文献   

2.
The effect of pressure sensitivity index on the deformation behavior in Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glasses was studied using the indentation tests. The results showed that the intersecting slip lines occurred in the as-cast samples when the metallic glasses was deformed, and their shear band quantity, length, and density decreased with increasing the pressure sensitivity index in the annealed samples. The plastic deformation size of the as-cast sample is higher than that of the annealed samples under all the loads. It is therefore indicated that the pressure sensitivity index can affect strongly the deformation behavior and morphological characteristics of shear band of the metallic glasses.  相似文献   

3.
设计了一种非晶合金摩擦焊装置,以Zr41Ti14Cu12.5Ni10Be22.5非晶棒料为研究对象,进行了摩擦焊试验.焊接样品经SEM,XRD,维氏硬度、TEM等检测,结果显示焊接界面无明显未熔合,样品仍然保持非晶态,接头硬度总体增大,接头处出现了纳米晶.采用ANSYS软件对非晶合金摩擦焊的温度场进行仿真.结果表明,在摩擦时间t=0.25s时摩擦界面中心温度超过非晶棒料玻璃转变温度,接触面全部进入过冷液相区,应进行顶锻.仿真结果与摩擦焊试验结果基本吻合,有利于指导焊接试验.  相似文献   

4.
Zr65Cu17.5Al7.5Ni10 (at.%) and Zr65Cu15Al10Ni10 (at.%) glass forming alloy microstructures have been investigated by means of optical and electron microscopies. They are composed of a fine eutectic matrix with eutectic dendrites (EDs) that have peculiar morphologies. Al and Cu concentrations, in these alloys, favour primary dendrites and determine the ED morphologies and compositions. Their locations within the microstructures suggest a two-step solidification process of the two undercooled melts. The identified crystalline phases indicate the occurrence of solid state phase transformations in agreement with the structural defects observed in the grains. The crystalline phases can be classified into Zr-rich, Cu-rich, Ni-rich and Al-rich compounds resulting from competing diffusion between Cu, Ni, and Al in the melts.  相似文献   

5.
An original in situ ultrasonic echography technique was used to study the thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass between RT and 630 °C. Changes in Young's modulus with temperature were reported allowing to study the supercooled-liquid state and the crystallisation process. Investigations of viscoelastic properties gave information on the correlation factor (hierarchically correlated motion theory) and three distinct crystallisation stages were observed. Their kinetics were studied using Voigt's and Reuss' approximations for a two-phase material and comparisons with the Johnson–Mehl–Avrami–Kolmogorov theory allowed us to consider a mixed surface/internal nucleation for the first stage and a surface nucleation for the two last stages.  相似文献   

6.
The effects of small amounts of Si on the glass-forming ability, glass transition and crystallization behaviors of a Ti40Zr10Cu36Pd14 bulk glassy alloy were investigated. The addition of Si caused the decrease of glass-forming ability and the increase of the supercooled liquid region. The fragility of the alloys containing Si was higher than that of the Si-free alloy. In the glass transition process, both generation and annihilation of free volumes are suppressed by the addition of 1–3 at% Si. The activation energy for crystallization increases with increasing Si content, indicating the improvement of thermal stability. The crystallization structure of the alloys containing Si contents less than 4% consisted of six phases of CuTi2, Ti, Cu8Zr3, Cu4Ti3, TiZr and PdTi2.  相似文献   

7.
Non-isothermal devitrification phase transformations in amorphous Al85Ni7Gd8 over the temperature range from 100 to 1300 °C were systematically investigated using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) techniques. Continuous heating DSC scans revealed that the crystallization proceeds through multiple stages. The only crystalline phase formed in the first two stages is fcc-Al, appearing exclusively as dendritic single crystals. A metastable phase (τn) is formed in the 3rd stage, and another metastable phase (τu) is formed in the 4th stage, together with the equilibrium ternary compound τ1. The equilibrium “binary” compound M3Gd (M=Al, Ni) with 0.4 at.% Ni solubility is formed only in the 5th stage. Further heating initiates eutectic melting at 635 °C, followed by other melting events at higher temperatures, until fully liquid when T>919 °C. Isothermal annealing at 260 °C readily induces formation of another metastable phase (τm) and fcc-Al. Fcc-Al nanocrystal development and interpretation of isothermal DSC technique is discussed.  相似文献   

8.
W.J. Kim  Y.K. Sa  J.B. Lee  H.G. Jeong 《Intermetallics》2006,14(12):1391-1396
Superplastic deformation and crystallization behavior of a Cu54Ni6Zr22Ti18 metallic glass were investigated. A maximum elongation of 650% was obtained at 733 K at 1 × 10−2 s−1 from the sheet fabricated by squeeze copper-mold casting method. At low strain rates, the strain-rate-sensitivity exponent value was close to 1, suggesting that Newtonian-like behavior governed the plastic flow. At a high strain rate around 10−2 s−1, a transition from Newtonian to non-Newtonian behavior took place with decrease in m value. Large strain hardening by crystallization occurred during the course of deformation. The strain hardening was found to be caused by crystallization according to the analyses of the relation of true stress vs. testing time, T-T-T diagram and DSC characteristics. The time periods up to the strain before strain hardening at 733 K for the Cu54Ni6Zr22Ti18 metallic glass were similar to that of the Zr65Al10Ni10Cu15 metallic glass at 696 K as 180–300 s (3–5 min). This coincidence could be explained by comparison of their T-T-T diagrams showing that the incubation times for crystallization of the Cu BMG at 733 K and for Zr BMG at 696 K are similar.  相似文献   

9.
In this study, pure Ti was coated on Zr55Al10Ni5Cu30 bulk metallic glass (BMG) using a physical vapour deposition (PVD) technique with magnetron sputtering. Microstructures of Ti coating, BMG substrate and interface were investigated by conventional and high-resolution transmission electron microscopy (TEM and HREM). The electrochemical behavior of Ti-coated Zr55Al10Ni5Cu30 BMG was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) in Hanks' solution. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the coating after electrochemical testing. HRTEM observation reveals that the sputtering Ti coating consists of α-Ti nano-scale particles with the size about 10 nm. The polarization curves revealed that the open-circuit potential shifted to a more positive potential and the passive current density was lower after Ti coating was applied in comparison with that of the monolithic Zr55Al10Ni5Cu30 BMG. Electrochemical impedance spectroscopy (EIS) measurements showed that the Bode plots of Ti-coated Zr55Al10Ni5Cu30 BMG presented one time constant for 1 h and 12 h immersion and two time constants after 24 h immersion. The good bonding condition between Ti coating and Zr55Al10Ni5Cu30 BMG substrate may be responsible for the high corrosion resistance of Ti-coated Zr55Al10Ni5Cu30 BMG.  相似文献   

10.
11.
12.
When loaded at cryogenic temperature under stresses below the global yield, an amorphous alloy revealed two clearly distinguishable exothermic events during heating in calorimetric experiments. These exotherms, commonly known as the α- and β-relaxations, were attributed to the annealing out of two different local structures with different structural stability, presumably free volume and shear transformation zone (STZ). In this study, we introduced a simple and reliable experimental technique, which enables the evaluation of the activation energy corresponding to the β-relaxation, Eβ. Based on experimental evidence and comparison with earlier studies, it is presumed that Eβ is directly related to the potential energy barrier to shear transformation.  相似文献   

13.
Multi-stage transformation (MST) in 500 °C annealed Ni-rich Ti49Ni41Cu10 shape memory alloy (SMA) is investigated by differential scanning calorimetry (DSC), dynamic mechanical analyzer (DMA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as solution-treated alloy undergoes B2 ↔ B19 ↔ B19′ two-stage transformations. Ti(Ni,Cu)2 precipitates are formed in 500 °C annealed specimens. Alloy annealed at 500 °C for 6–24 h exhibits MST. This MST is confirmed by DMA tests and is composed of B21 ↔ B191 ↔ B19′1 and B22 ↔ B192 ↔ B19′2 transformations corresponding to the regions near and far from Ti(Ni,Cu)2 precipitates, respectively. Experimental results show that the more the annealing time, the more the B21 ↔ B191 ↔ B19′1 transformations and finally only B21 ↔ B191 ↔ B19′1 transformations retain with the transformation temperatures close to those of Ti50Ni40Cu10 SMA.  相似文献   

14.
将Zr52.5Cu17.9Ni14.6Al10Ti5(Vit105)块体非晶合金棒用水砂纸和抛光膏打磨到不同粗糙度,研究表面粗糙度对试样压缩变形行为的影响。结果表明,随着试样表面粗糙度的降低,屈服强度并没有明显变化,但压缩塑性从2.3%提高到4.5%。在扫描电镜下观察断裂试样的侧面发现,塑性越大的试样,剪切带的密度越大。因此,对于非晶合金,要得到较大的塑性,降低表面粗糙度是必要的。  相似文献   

15.
Effect of ball-milling and shot-peening on a metallic glass Zr55Al10Ni5Cu30, which possesses a large supercooled liquid region, has been investigated by means of differential scanning calorimetry, x-ray diffractometry and transmission electron microscopy. Metallic glassy ribbons, powders and plates were prepared by melt-spinning, gas-atomizing and mold-clamp casting techniques, respectively. No structural changes were observed in both the ribbon and powder specimens by ball-milling for around 100 h; however, the powder specimens were crystallized by Fe contamination when they were ball-milled for 540 h. No structural evolution was also observed when the plate specimens were subjected to shot-peening, while crystallized plate specimens were easily amorphized by mild and short period shot-peening. These results imply high phase stability of the Zr55Al10Ni5Cu30 metallic glass against deformation.  相似文献   

16.
The Zr48Cu45Al7 amorphous alloy samples quenched under cooling rates of about 2 × 106 K/s and 1 × 102 K/s were prepared by melt spinning and copper-mold suction casting, respectively. Synchrotron-radiation based experiments, combined with a series of calculations, were performed to study the microstructures in both samples. It was found that although the short-range orderings are similar in Zr-centered clusters for both samples, the atom arrangements and distributions in Cu- and Al-centered clusters are very different in terms of atomic-packing efficiencies and regularity of clusters in these two samples. A quantitative analysis revealed that the lower cooling rate leads to the higher packing efficiency and the higher regularity of clusters. This revealed how the cooling rate during quenching fine-tunes the atomic- and cluster-level microstructures in amorphous alloys with the same composition, which may be the structural basis to address the issue why macroscopic properties change with the cooling rate.  相似文献   

17.
Electron beam (EB) is becoming very popular for the modification of the surfaces as it involves localized melting and fast cooling which helps in achieving the non-equilibrium phases as well as fine microstructure. Surface modification of Zr-based amorphous alloy Zr55Cu30Al10Ni5 has been carried out by EB melting. Differential scanning calorimetry (DSC) was employed to determine the supercooled liquid region and activation energy of crystallization. The as-cast and modified surfaces of amorphous alloy at different beam conditions were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. Various phases like NiZr2, CuZr2 and Cu10Zr7 were identified which resulted in the enhancement of hardness of the modified alloy surface.  相似文献   

18.
An undercooled Pd42.5Cu30Ni7.5P20 melt having a eutectic composition exhibits the lowest critical cooling rate for glass formation of 0.067 K/s. Nucleation and crystal growth behaviors of the undercooled melt were investigated. For example, nucleation frequency and crystal growth rate at 683 K where the temperature is close to nose temperature were evaluated as 4.76×109 nuclei/m3 s and 3.24×10−7 m/s, respectively. These values are almost the same as those for the undercooled Pd40Cu30Ni10P20 melt which has a slightly off-eutectic composition. However, the difference in incubation time for crystallization and nucleation mode was observed in both melts. The nucleation mechanism of undercooled Pd42.5Cu30Ni7.5P20 and Pd40Cu30Ni10P20 melt is compared. Based on these results, the prolongation in incubation time for crystallization is discussed in the present study.  相似文献   

19.
The effects of annealing and annealing with a superimposed pressure of 940 MPa on the primary crystallization behaviour of α-Al and the resulting micro-hardness have been studied for as-quenched Al87Ni7Gd6 metallic glass. Isothermal annealing experiments were conducted for 30 min at 188 °C, 191 °C, and 205 °C in silicone oil maintained either at atmospheric pressure (i.e. 0.1 MPa) or at 940 MPa. XRD analyses detected the evolution of structure with annealing at 0.1 MPa, while specimens annealed with 940 MPa pressure exhibited sharper diffraction peaks than those annealed at 0.1 MPa. DSC measurements were conducted on the as-received amorphous ribbons as well as ribbons annealed at different temperatures at either 0.1. MPa or with 940 MPa superimposed pressure. Specimens annealed with 940 MPa pressure exhibited higher onset temperatures (i.e. Tx1) and temperatures for the first exothermic peak (i.e. Tp1) for primary crystallization. TEM measurements revealed an increase in the volume fraction of α-Al with increases in annealing temperature, while micro-hardness measurements revealed an increase in hardness with increasing amounts of α-Al. Specimens annealed with 940 MPa pressure exhibited further increases in both the volume fraction of α-Al and resulting micro-hardness.  相似文献   

20.
The effect of Mo on the structure–property relationships of arc-melted cast in situ composites of Nb solid solution (Nbss) and -(Nb,Mo)5Si3, with hypereutectic Nb–19.1Si–5.2Mo (A) and Nb–17.9Si–26.3Mo (B), and hypoeutectic Nb–12.8Si–4.1Mo (C) and Nb–12.3Si–14.8Mo (D) compositions has been studied. The influence of Mo concentration on lattice constants and microhardness of the constituent phases has been analyzed. The morphology, volume fraction and size distribution of the primary phase and the eutectic have been critically examined and related to the elastic modulus, hardness and fracture toughness of the composites. Fracture toughness values, determined through three-point bend and indentation tests, increase with higher amount of coarse eutectic but decrease with increasing Mo content. Indentation cracking exhibits R-curve type behaviour, promoted through bridging or arrest of cracks by the coarse Nbss in the eutectic. The study suggests promise for near-eutectic compositions of Nb–Si–Mo ternary system with low concentration of Mo for structural applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号