首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Zn(NO3)2、Na2CO3为原材料,采用自制撞击流微反应器连续制备出纳米ZnO,系统研究了反应温度、反应物浓度、进料速率等工艺条件对所制备纳米ZnO光催化性能的影响,采用SEM、XRD等测试手段对制备产物的物相及微观形貌进行了表征。结果表明,采用撞击流微器可实现纳米ZnO的连续高效制备,其光催化性能随着反应温度和进料速率的增大而升高,随着反应物浓度的增大先提高后降低。当反应温度为80℃,反应物浓度为0.3mol·L-1,Na2CO3溶液的进料速率为350mL·min-1、Zn(NO3)2溶液的进料速率为291mL·min-1时,可制得平均粒径为20.1nm,粒径分布较均匀的纳米ZnO。以其为光催化剂,在100W高压汞灯照射下降解甲基橙(MO)40min,其降解率可达到93.9%,表现出良好的光催化性能。  相似文献   

2.
采用直接沉淀法将氯化锌与氨水反应合成纳米ZnO粉末,通过X射线衍射和扫描电子显微镜进行表征.在模拟紫外光和可见光条件下,以亚甲基蓝(methylene blue,MB)为印染废水中目标污染物,考察了纳米ZnO的光催化活性,研究制备纳米ZnO的煅烧温度、纳米ZnO投加量、光催化反应时间、溶液的初始pH值和初始质量浓度对MB去除率的影响.结果表明,在煅烧温度为400℃(此时ZnO形貌为球状与片状混合)、纳米ZnO的投加量为2 g/L、溶液的初始质量浓度为5 mg/L、pH=9时,紫外光和可见光分别照射3 h后纳米ZnO对MB最大去除率为93. 11%和65. 49%;紫外光照下纳米ZnO循环使用4次后对MB的去除率仍达到88. 00%;自由基猝灭实验表明,空穴是纳米ZnO降解MB的主要因素.纳米ZnO粒径小、比表面积大、禁带宽度小、重复利用率高,且绿色环保,可广泛用于水处理领域.  相似文献   

3.
为了探究纳米粒子的紫外屏蔽性能,以TiOSO_4、ZnCl_2为原料,以NH_3·H_2O为调节剂,以PEG 400为分散剂,采用超声沉淀法,在不同煅烧温度、煅烧时间条件下制备了纳米TiO_2、ZnO以及TiO_2/ZnO材料;采用FT-IR、XRD、XPS、UV等方法对纳米粒子进行了表征,考察纳米粒子的紫外屏蔽性能.表征结果显示:当纳米TiO_2粒子在800℃下煅烧4 h、纳米ZnO粒子在500℃下煅烧4 h时,其紫外屏蔽性能最佳;TiO_2/ZnO复合粉体相对于单一纳米TiO_2、ZnO粒子屏蔽紫外线的能力更强.  相似文献   

4.
采用湿化学法成功制备了氧化锌(ZnO)纳米流体。用X射线衍射仪(XRD)、透射电子显微镜(TEM)对ZnO纳米颗粒的成分、分散性、形貌和粒径进行了分析表征;研究了醇水比(丙二醇(PG)/水)、乙酸锌浓度、反应时间、分散剂等因素对纳米流体分散稳定性和ZnO粒径的影响。结果表明,以乙酸锌((CH3COO)2Zn·2H2O)为锌源,以氢氧化钠(NaOH)为碱源,V(丙二醇)∶V(水)=3∶2,乙酸锌浓度为0.1mol·L-1,反应时间0.5h,聚乙二醇2000(PEG2000)加入1%(m(PEG2000)/m(乙酸锌)=1%)时为最佳工艺条件,产物氧化锌颗粒大小在20~30nm,分散性好,解决了团聚问题,可以稳定较长时间。  相似文献   

5.
纳米ZnO作为应用前景意义很大半导体材料,有较高研究价值,为此以Zn(AC)22H2O、La2O3、Bi(NO3)35H2O为主要原料,柠檬酸为络合剂,利用溶胶 凝胶法制备了纳米ZnO.i2O3La2O3复合粉体.通过实验研究制备纳米ZnO.i2O3La2O3复合粉体的最佳工艺条件,并利用x-线衍射(XRD)、透射电镜(TEM)、比表面积测定对制备的复合粉体性能进行表征.结果表明,在最佳工艺条件下,干凝胶在600℃条件下煅烧2h,得到了粒径分布约为54nm、比表面积为120.7m2/g的纳米ZnO.i2O3La2O3复合粉体,说明溶胶-胶法制备纳米ZnO有较好的结果.  相似文献   

6.
采用溶胶-凝胶法制备了具有可见光响应的ZnO/TiO2催化剂。考察了煅烧温度、煅烧时间、ZnO掺杂量对ZnO/TiO2催化剂性能的影响及阳光下不同紫外线强度对ZnO/TiO2催化剂降解溴氨酸水溶液的影响。结果表明:当煅烧温度为400℃,煅烧时间为2h,ZnO掺杂比为1%时,催化剂性能较佳;紫外线指数为5,光照5h时,溴氨酸水溶液的褪色率达到100%,在太阳光直射下3h后,溴氨酸水溶液的褪色率为97.73%,TOC去除率为82.88%。  相似文献   

7.
棒状氧化锌纳米材料的制备及表征   总被引:1,自引:0,他引:1  
分别以Zn(Ac)2.2H2O和Zn(NO3)2.6H2O为锌源,利用简易的低温液相法制备了2种不同形貌的ZnO纳米棒状结构。XRD衍射图谱表明,所得的ZnO纳米棒具有六角纤维锌矿结构;通过SEM观察可知,以Zn(Ac)2.2H2O为锌源制备的ZnO纳米棒,长度1~5μm,直径50~100 nm;以Zn(NO3)2.6H2O为锌源制备的ZnO纳米棒,长度0.5~1μm,直径40~60 nm。  相似文献   

8.
采用溶胶-凝胶法,以醋酸锌(Zn(CH3COO)2.2H2O),草酸((COOH)2.2H2O)和无水乙醇为原料,制备得到了粒子直径在30 nm左右、粒度分布均匀、分散性较好的球状纳米ZnO粒子.以上述反应为基础,在反应体系中加入一定量的有机添加剂三乙醇胺,得到了棒状结构的纳米ZnO.利用透射电子显微镜(Transmission Electron Microscopy,TEM)研究了有机添加剂三乙醇胺的加入对产物纳米ZnO形貌的影响.实验结果表明:有机添加剂三乙醇胺在棒状纳米ZnO的形成过程中起决定性作用,并且所形成的棒状纳米ZnO的形貌随添加剂用量的不同而不同,所以调节三乙醇胺的加入量可以有效地控制纳米ZnO的形貌.  相似文献   

9.
以Ti_3C_2、Zn(NO3)2·6H2O、NaOH和SDBS为原料,采用水热法在不同锌碱比的条件下,合成Ti_3C_2负载ZnO二维电极材料.通过XRD和SEM分析发现,在水热15h、100℃、Zn(NO3)2·6H2O∶NaOH(摩尔比)为1∶20、ZnO∶SDBS(摩尔比)为3∶1的条件下,随着Ti_3C_2∶ZnO质量比的不断增加,ZnO的形貌由纳米棒状向纳米片状转变.电性能测试果表明:当Ti_3C_2与ZnO质量比为1∶10时,Ti_3C_2负载ZnO二维材料的比电容和电容及电性能最佳,在1A/g电流密度下可逆比电容达到24.67F/g,电容达到44.80F,且循环3 000次之后保持67.56%.  相似文献   

10.
以FeCl3·6H2O和NaOH为原料,Tw een-80为分散剂,在室温下通过固相反应制备前驱物,然后煅烧前驱物制得纳米氧化铁。研究了表面活性剂的用量、前驱物的煅烧温度、煅烧时间对产物的影响。利用XRD对制备的纳米氧化物进行表征。结果表明,制备的产物为纳米α-Fe2O3。表面活性剂Tween-80可使产物的产率明显提高,粒径减小;随煅烧温度的提高,煅烧时间的延长,产物的粒径先减小,再增大。煅烧温度500℃,煅烧时间2h,制得的α-Fe2O3的平均粒径为21nm。  相似文献   

11.
化学共沉淀法制备纳米钛酸钡的研究   总被引:3,自引:0,他引:3  
采用化学共沉淀法和溶胶-凝胶法两种液相反应法制备了纳米BaTiO3;使用透射电子显微镜(TEM)与X-射线衍射(XRD)技术等手段表征了粉体粒子的形貌、粒径及粒径分布,从而将化学共沉淀法与溶胶-凝胶法进行了对比,并择优选择了化学共沉淀法制备纳米BaTiO3;重点研究了各种工艺条件对产物粒径、粒径分布、微粒形貌等物性的影响规律,探索了适宜的制备工艺条件.实验结果表明:以钛酸四丁酯(TNB)为起始原料,采用草酸共沉淀法可成功地制备纳米钛酸钡;采用适宜的起始原料配比、反应温度、反应时间、煅烧条件等反应条件,可制得平均粒径为(30~50)nm且粒径分布较均匀的钛酸钡微粒.  相似文献   

12.
用不同锌盐与氢氧化钠,通过固相反应合成ZnO纳米材料,研究不同原料配比、锌盐种类和表面活性剂对ZnO纳米晶体形貌的影响。用XRD、FE-SEM分析了ZnO产物的物相组成与显微形貌。研究结果表明:当锌盐与氢氧化钠的物质的量比为1∶2时,合成的ZnO晶体均呈颗粒状,以Zn(NO_3)_2和ZnCl_2为锌盐,得到的ZnO纳米晶体平均粒度分别为50nm和60nm,而以Zn(CH_3COO)_2为锌盐,得到的ZnO晶体粒度为80~620nm;当锌盐与氢氧化钠的物质的量比为1∶5时,以Zn(NO_3)_2和Zn(CH_3COO)_2为锌盐,合成的ZnO呈薄片状,以Zn(NO_3)_2为锌盐,得到的ZnO晶体片厚30nm,片长180nm,而以Zn(CH_3COO)_2为锌盐,得到的ZnO晶体片厚50nm,片长500nm,当锌盐为ZnCl_2时,其产物呈颗粒状,晶体粒度为120~400nm;原料中添加表面活性剂(十二烷基苯磺酸钠),对产物的形貌有较大影响,以Zn(NO_3)_2为锌盐,与氢氧化钠的物质的量比分别为1∶2和1∶5时,可分别得到片状与颗粒状的ZnO。  相似文献   

13.
以直接沉淀法制备纳米ZnO,并利用其对亚甲基蓝溶液进行光催化降解反应。分别研究了Na_2CO_3浓度和前驱物焙烧温度对纳米ZnO光催化性能的影响。结果表明:在ZnSO_4和Na_2CO_3溶液浓度分别为0.25 mol/L和1.0 mol/L、滴加速度6.4 mL/min、焙烧温度500℃的条件下,制备出的纳米ZnO对亚甲基蓝的光催化效果最佳。借助于FTIR和TGA-DSC对前驱物的组成进行分析,得出其组成为ZnCO_3和Zn(OH)_2的混合物(碱式碳酸锌);XRD证明了制得的ZnO纳米光催化材料的晶型为六方晶系纤锌矿,而且结晶度较高;从SEM图像中,可观察到纳米级的催化剂颗粒,以及它们之间严重的团聚现象;用激光粒度仪测水溶液中纳米材料粒径分布,发现其主要以微米的形式存在。  相似文献   

14.
固体催化剂用于酯交换反应制备生物柴油具有易分离、流程简单的优点,制备了Zn/Al水滑石,以其为前驱体经煅烧制得了Zn/Al复合氧化物酯交换催化剂。用XRD、TG/DTA、XPS、AAS、BET等技术对催化剂结构进行了表征。结果表明,大的比表面积、均匀的孔结构和活性组份ZnO的良好的分散状态可以提高Zn/Al复合氧化物催化剂的反应活性。经400℃煅烧8 h制得的Zn/Al复合氧化物催化剂,在200℃、3.3 MPa、油/醇质量比为7∶10、1.4(wt)%催化剂用量的条件下,在3 min内油脂转化率达到89.1%。  相似文献   

15.
固体催化剂用于酯交换反应制备生物柴油具有易分离、流程简单的优点,制备了Zn/Al水滑石,以其为前驱体经煅烧制得了Zn/Al复合氧化物酯交换催化剂。用XRD、TG/DTA、XPS、AAS、BET等技术对催化剂结构进行了表征。结果表明,大的比表面积、均匀的孔结构和活性组份ZnO的良好的分散状态可以提高Zn/Al复合氧化物催化剂的反应活性。经400 ℃煅烧8 h制得的Zn/Al复合氧化物催化剂,在200 ℃、3.3 MPa、油/醇质量比为7∶10、1.4 (wt)%催化剂用量的条件下,在3 min内油脂转化率达到89.1%。  相似文献   

16.
以表面活性剂溴化十六烷基三甲胺(CTA)为分散剂,采用溶胶-凝胶法合成了三种金属氧化物纳米材料(纳米Fe2O3、ZrO2和ZnO),运用透射电镜及BET对产品进行了表征.考察了pH值、反应物用量、灼烧温度、灼烧时间等因素对产品平均粒径和比表面积的影响,比较了三种纳米材料的合成条件、稳定性和光催化活性.结果表明:在最佳合成条件下,产品的平均粒径为20~35 nm,且粒径分布较均匀,总产率大于80%.纳米Fe2O3、ZrO2有很强的稳定性,而纳米ZnO具有较高的光催化活性.  相似文献   

17.
以H2C2O4.2H2O和ZnO为原料,用流变相反应制备了纳米ZnO.用正交实验法研究确定了最佳合成条件:用流变相反应在60℃加热3 h制得前驱物ZnC2O4.2H2O,再将前驱物在450℃热分解3 h得到纳米ZnO.通过FR-IR、TG-DTA、XRD、TEM等分别对前驱物的组成、热分解行为与纳米氧化锌的物相结构、粒径等进行了表征.通过实验现象与结果对反应机理进行了探讨. 更多还原  相似文献   

18.
微乳液法制备纳米ZnO粉体   总被引:12,自引:0,他引:12  
采用双微乳液混合法制备纳米ZnO粉末.通过实验从nH2O/nAEO3 AEO9、反应物浓度、老化温度及时间、前驱体煅烧温度及时间等方面讨论影响产物的粒径,确定了制备纳米ZnO粉末的较理想的工艺条件.经XRD,TEM和激光粒度仪等检测表征,产物为球形六角晶系结构,平均粒径27nm,粒径尺寸分布范围较窄,99%颗粒达纳米级.  相似文献   

19.
以尿素为沉淀剂、六水合氯化镁为金属盐溶液、聚乙烯醇(PVA)为分散剂,采用均匀沉淀法制得氢氧化镁,并将其煅烧制得纳米氧化镁.分别讨论了分散剂用量、反应物配比、反应温度和时间、前驱物氢氧化镁的煅烧温度和时间对产物纳米氧化镁的粒径的影响,获得了最佳工艺条件.分别用X射线粉末衍射法(XRD)、及扫描电镜(SEM)对该纳米晶体的结构和性能进行了表征.结果表明:聚乙烯醇加入量为溶液质量的0.5‰,尿素与六水合氯化镁摩尔比为6∶1时,于100℃反应4 h,在500℃煅烧1.5 h得到纳米氧化镁粉体,平均粒径为50 nm.  相似文献   

20.
均匀沉淀法制备纳米MgO   总被引:1,自引:0,他引:1  
以硝酸镁和尿素为原料,聚乙二醇为分散剂,用均匀沉淀法合成了氢氧化镁,并将其煅烧制得纳米MgO.讨论了反应温度、反应时间、反应物配比对氢氧化镁产率的影响.确定了合成氢氧化镁工艺;用视比容分析方法确定了制备纳米MgO煅烧工艺;并通过SEM对纳米MgO的形貌进行了分析,得到了平均粒径为50 nm分散较好的纳米MgO.实验合成氢氧化镁的最佳条件为:反应温度125℃;反应时间5h;反应物配比(尿素/Mg(NO3)2.6H2O)为6:1;最佳煅烧工艺为:温度500℃,时间2h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号