首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
相比其他地铁线路轨道减振形式,中等减振扣件具有造价低、易于维护、方便调节轨距等优点,在地铁建设中逐渐被广泛采用。为研究中等减振扣件在行车环境中的减振性能,对某地铁安装中等减振扣件的直线断面的钢轨振动加速度、道床振动加速度、隧道壁振动加速度以及钢轨动态位移进行现场测量。测量时主要依据GB/T13441 系列标准,采用铅垂向Z振级VLZ作为评价指标,对振动加速度数据进行1/3 倍频程分析。通过与安装普通扣件直线断面的相应测量结果进行对比可知,(1)中等减振扣件可有效减小隧道壁的振动达8 dB以上。(2)通过对钢轨、道床以及隧道壁的振动测试,可知中等减振扣件具有较好的减振效果。(3)根据钢轨动态变形测试结果可知,虽然安装中等减振扣件的钢轨竖向位移、轨头横向位移、轨距变化量比安装普通扣件的有所增加,但是其增加值均在允许范围内,可以满足列车安全运营的要求。(4)研究结果对于中等减振扣件的设计以及地铁线路轨道结构设计与规划具有参考与借鉴意义。  相似文献   

2.
为了减少因地铁列车运行时钢轨产生的振动,研发了一种改进型高刚度的谐振式浮轨扣件系统,它充分利用其谐振及弹性元件的动力吸振和隔振特点,能有效地减少钢轨及道床的振动。本文详细介绍了该系统试验中采用的轨道变形及振动、道床及隧道壁振动的测试方法,以及在成都地铁一号线路上分别采用DTVI2型扣件和谐振式浮轨扣件的减振效果。对比试验表明谐振式浮轨扣件具有较好的钢轨减振能力,取得了很好的减振及隔振综合效果,道床及隧道壁的振动水平在改进型谐振式浮轨扣件道床相对DTVI2型扣件道床降低8-9dB左右,谐振式浮轨扣件的轨道变形也满足线路安全设计标准的要求。  相似文献   

3.
为评价成都地铁钢弹簧浮置道床的实际减振效果,选取线路条件基本相同的断面,分别对圆形盾构隧道直线段和曲线段的钢弹簧浮置板道床以及对应的普通整体式道床进行现场测试。在时域和频域内分析了钢弹簧浮置板道床减振段隧道壁垂向振动特性与实际减振效果。结果表明:(1)在圆形隧道直线段和曲线段中运用钢弹簧浮置板轨道均可对隧道壁振动起到很好的减振作用,隧道壁减振效果分别为22.16dB和19.15dB;(2)直线段和曲线段钢弹簧浮置板轨道的显著减振频率范围分布为25Hz~200Hz和40Hz~200Hz,但均在6.3~16Hz表现出振动放大现象。  相似文献   

4.
为了完善现有地铁轨道振动测试评价体系的不足之处,从而更全面地研究地铁轨道的振动传递特性.首先利用加速度传感器,以某地铁线路的减振道床和普通整体道床轨道为研究对象进行振动测试,然后采用"1/3倍频程分析"对两者的钢轨、道床、隧道壁分频振级进行对比分析,最后采用"传递函数分析"方法对振动在钢轨、道床、隧道壁的传递过程进行了...  相似文献   

5.
为了完善现有地铁轨道振动测试评价体系的不足之处,从而更全面地研究地铁轨道的振动传递特性。首先利用加速度传感器,以某地铁线路的减振道床和普通整体道床轨道为研究对象进行振动测试,然后采用“1/3 倍频程分析”对两者的钢轨、道床、隧道壁分频振级进行对比分析,最后采用“传递函数分析”方法对振动在钢轨、道床、隧道壁的传递过程进行了研究。研究表明:由于不同轨道结构的基础约束存在差异,减振道床的钢轨与道床的振动响应略大于普通整体道床,而隧道壁竖向的振动响应显著低于普通整体轨道,因此减振道床的减振效果主要体现于对列车垂向振动能量的耗散。“1/3 倍频程分析”以及“传递函数分析”两者方法侧重点不同,两种方法互为补充,对于地铁轨道减振效果的分析与评估均具有十分重要的意义。通过引入“传递函数分析”对地铁轨道振动特性进行研究分析,可以更加全面地评估减振道床的减振效果。  相似文献   

6.
为评价成都地铁钢弹簧浮置道床的实际减振效果,选取线路条件基本相同的断面,分别对圆形盾构隧道直线段和曲线段的钢弹簧浮置板道床以及对应的普通整体式道床进行现场测试。在时域和频域内分析钢弹簧浮置板道床减振段隧道壁垂向振动特性与实际减振效果。结果表明:(1)在圆形隧道直线段和曲线段中运用钢弹簧浮置板轨道均可对隧道壁振动起到很好的减振作用,隧道壁减振效果分别为22.16 dB和19.15 dB;(2)直线段和曲线段钢弹簧浮置板轨道的显著减振频率范围分布为25 Hz~200 Hz和40 Hz~200 Hz,但均在6.3 Hz~16 Hz表现出振动放大现象。  相似文献   

7.
为研究减振扣件对地铁隧道-地表环境振动的减振效果,对普通扣件和减振扣件下列车运行引起的隧道结构和地表振动响应进行现场实测分析,针对减振扣件和普通扣件得到以下结论:(1)减振扣件能明显降低钢轨的水平向振动,采用浮轨扣件后会使得钢轨的垂向振动明显增大;(2)减振扣件能明显控制隧道内结构的振动。对于隧道内振动控制效果,浮轨扣件效果更好。当采用减振扣件后,会出现道床和轨枕处的固有频率向低频偏移的现象,且会造成低频放大;(3)对于地面测点,由于低频振动在土层中的衰减较弱,会导致对与地面测点,双层非线性扣件加速度有效值和加速度峰值小于浮轨扣件。两种扣件均满足规范限定要求,在2 Hz~50 Hz频段范围内双层非线性扣件的加速度级小于浮轨扣件,双层非线性扣件的固有频率出现在63 Hz,浮轨扣件的固有频率出现在20 Hz说明两种扣件对于地面控制频段范围存在差异。  相似文献   

8.
现场调查某地铁线路上普通短轨枕、先锋扣件和钢弹簧浮置板三种轨道的钢轨波磨特征,并分别进行振动测试,研究钢轨存在波磨时,三种轨道结构的振动特性及减振效果。结果表明:三种轨道结构都是内轨波磨明显,外轨表面不平顺幅值相比内轨都很小,可以忽略不计其影响;波磨主波长频率成分很容易在轨道各零部件(包括隧道壁)振动中激发出来,并且会引起较大幅值的振动;在4 Hz~200 Hz频率范围内,波磨激励下的减振型轨道依然具有良好的减振性能,但是与其最初设计用于的减振效果相比,有明显的下降;先锋扣件轨道短波长波磨会削减隧道壁在高频段的减振效果;钢弹簧浮置板轨道的波磨幅值显著,虽然对其隧道壁的减振效果影响不明显,但是会造成钢轨振动增加。  相似文献   

9.
在苏州轨道交通1号线滨河路至塔园路上行隧道内,采用锤击法分别测试短轨枕断面(III型减振器扣件+短轨枕式整体道床)和长轨枕断面(普通扣件+长轨枕式整体道床)钢轨上激励点至钢轨、轨枕、道床以及隧道侧壁的振动传递。测试结果表明,扣件对于钢轨振动的衰减主要体现在小于100 Hz的低频段,而轨枕对频率大于100 Hz的振动有相对好的衰减效果。对比两个断面中钢轨测点至道床的传递函数,III型减振器扣件+短轨枕式整体道床具有更好的减振效果,在40 Hz~80 Hz频段的振动峰值衰减10 dB左右。  相似文献   

10.
轨道结构的固有特性不因车辆系统及列车运营状态的变化而变化,可通过轨道的振动动态频响测试来辨识系统的传递特性和特征参数。基于国内某地铁正常运行的350 m小半径曲线线路,测试双层非线性减振扣件、III型轨道减振器扣件及DTVI2减振扣件等3种轨道结构线路在正常列车运营条件下钢轨动态振动响应及对应线路钢轨波磨水平,得到频率大于400 Hz时III型轨道减振器扣件及双层非线性扣件的钢轨横向振动大于垂向振动。结合线路钢轨波浪磨耗的特征,在车速65 km/h下中等减振扣件(双层非线性扣件与III型轨道减振器扣件)钢轨波磨多集中在50mm~80 mm短波长,分析得到III型轨道减振器扣件及双层非线性扣件的钢轨横向动态振动频响峰值与其钢轨波浪磨耗激励的200 Hz~400 Hz频率范围基本吻合,初步得到区段钢轨波磨形成和发展的影响因素。同时,采用锤击方法对比3种扣件轨道结构型式下轨道的振动衰减率及阻尼特性,综合结果发现双层非线性减振扣件相对于其他两种扣件轨道结构型式特别在400 Hz~630 Hz频段范围对钢轨的横向振动有较好的抑制作用。  相似文献   

11.
当列车通过浮置板轨道和减振型扣件轨道等减振区段时,车内噪声较大,影响乘客的舒适性。滚动噪声是车内噪声的重要组成部分,而钢轨声功率反映了钢轨滚动噪声能量的大小。为了研究地铁隔振措施对钢轨声功率特性的影响,对不同隔振措施下钢轨垂向振动沿纵向的轨道衰减率和钢轨加速度导纳进行了测试,计算分析了单位简谐点激励下的钢轨垂向振动相对声功率级。结果表明所测隔振措施通过降低轨道垂向刚度,改变了钢轨垂向振动的加速度导纳幅值和轨道衰减率。钢弹簧浮置板道床和减振垫浮置板道床提高了三分之一倍频程中心频率200 Hz以下的轨道衰减率,而GJ-III型减振扣件长枕整体道床的衰减率在中心频率2 500 Hz以下小于非减振型扣件长枕整体道床。钢轨在受到单位简谐点激励作用时,浮置板道床的钢轨声功率在200 Hz以下明显增大,而GJ-III型减振扣件长枕整体道床的钢轨声功率在500 Hz以下明显增大。  相似文献   

12.
车轮多边形磨损是地铁车辆运营过程中经常出现的现象,该现象易导致车辆和轨道结构发生异常振动。针对国内某地铁线路,在现场测试车轮多边形磨损状态基础上,通过测试对比有、无车轮多边形磨损的车辆通过地铁线路减振式钢弹簧浮置板道床段和非减振普通整体道床段时的轨道振动加速度,研究地铁车轮多边形磨损状态对轨道振动大小和减振特性的影响。结果表明:调查的地铁线路列车车轮存在13 阶~17 阶多边形磨损,其粗糙度平均水平为21.3 dB re 1 μm;当存在车轮多边形磨损的列车通过浮置板轨道时,钢轨、弹条、轨枕、道床、隧道壁测点的垂向振动加速度均方根值分别为105.09 m/s2、154.41 m/s2、13.04 m/s2、8.16 m/s2、0.028 m/s2,与无车轮多边形磨损列车通过时相比,振动水平分别增大了137.5 %、145.3 %、105.4 %、111.9 %、75.0 %。车轮多边形磨损对浮置板轨道的道床板及其以上部件振动水平的影响比对普通整体道床轨道的更显著,对浮置板轨道隧道壁振动的影响则小于对普通整体道床轨道隧道壁的影响。存在车轮多边形磨损的车辆通过浮置板轨道时,通过频率为61 Hz~104 Hz,易激发轨道的整体垂向弯曲共振模态,引起道床板振动幅值过大。在运行列车有、无13 阶~17 阶多边形磨损时,钢弹簧浮置板轨道减振量分别为29.33 dB和35.11 dB,车轮多边形磨损的存在降低浮置板轨道的减振效果。  相似文献   

13.
以南昌地铁1号线八一广场段为工程背景,对轨道-隧道-大地的三维有限元模型进行动力学分析。分别建立三种道床模型:整体道床、弹性支承块道床和钢弹簧浮置板道床。以振动加速度、1/3倍频程振动加速度级和Z振级作为评价指标,比较不同轨道结构下隧道壁及地面的振动响应。随之减振道床支承刚度的变化,分析道床的自振频率对减振效果的影响。计算表明:列车引起的地面振动主频在40 Hz附近;减振道床的自振频率对减振效果有较大影响;钢弹簧浮置板道床减振效果明显优于弹性支承块道床。  相似文献   

14.
根据南京地铁1号线地下线整体道床轨道结构的工况,设计开发了一款嵌入式地铁减振扣件。该扣件的接口安装尺寸和使用高度以及配套件与原普通扣件完全一致,降低了施工难度与周期,同时大幅降低了既有线路改造升级的成本;减振扣件的插入损失达到12.89 d B,车辆在垂向和横向的平稳性指标为优。新型地铁减振扣件可在不影响列车正常运营和轨道结构边界不变的前提下,实现线路的快捷改造升级,并有效保证列车的平稳运行和减小对周边环境的影响。  相似文献   

15.
采用浮轨扣件对昆明地铁钢轨波磨严重、附近环境振动噪声超标的某路段进行改造,分别测试改造前后钢轨变形、轨道系统振动、钢轨波磨、车内振动噪声、敏感建筑物振动及二次辐射噪声变化水平。结果表明,与普通扣件相比,在采用浮轨扣件区间隧道壁振动降低12.2 d B(Z),车内振动噪声分别降低5.3 d B(Z)和6.6 d B(A),钢轨波磨降低4.2 d B(A),敏感建筑物室内振动和二次辐射噪声分别降低6.3 d B(Z)和4.0 d B(A),表明浮轨扣件在低速工况下具有较好的抑制钢轨波磨和减振降噪性能。  相似文献   

16.
摘 要:在地铁线路中,小半径曲线段的列车振动加速度一般大于同种轨道结构的直线段。为了研究小半径曲线段车内振动的频谱特性,选择了半径为350m的地下隧道区间进行测试,该区间分布着钢弹簧浮置板整体道床、科隆蛋扣件和DT-III型扣件三种轨道结构。分析了双面胶带、螺钉等多种传感器安装方式对测量结果的影响,采用DASP V11软件测量一天中三个不同时段车厢地板垂向和横向振动加速度,并进行Z振级和X振级分析。结果表明:半径为350m的曲线隧道内,钢弹簧浮置板整体道床、科隆蛋扣件和DT-III型扣件三个区段车厢地板振动对应的垂向振级峰值频率分别为8Hz和63Hz,3.15Hz、8Hz和63Hz,50Hz和100Hz;横向振级峰值频率为63Hz,63Hz,50Hz和100Hz;钢弹簧浮置板整体道床段和科隆蛋扣件段车厢地板振动加速度大于普通型扣件段。通过本次测试,为小半径曲线段振动噪声问题提供一些减振降噪措施选择方面的参考,同时为研究小半径曲线段车厢地板振动特性问题提供支持。  相似文献   

17.
评价运营地铁线路减振轨道的减振效果时,常选取非减振参考轨道断面与其进行对比测试,计算得到"对比损失"。然而两测试断面背后地层动力特性通常存在差异,这种差异导致测试得到的"对比损失"不能准确的反映出减振轨道的实际减振效果。为定量分析这一因素对减振效果评价的影响,该文利用车辆-轨道耦合解析模型计算得到列车运行时钢轨的扣件支反力,利用有限元软件建立"轨道-隧道-地层"三维数值模型,考虑整体道床轨道和钢弹簧浮置板轨道两种轨道型式,计算并分析了地层动弹性模量等参量变化对浮置板轨道对比损失造成的影响,并对数值模型计算结果进行拟合,得到减振轨道Z振级对比损失的修正公式。结果表明:地层动弹性模量差异是测试断面地层动力特性差异的控制参数,对减振轨道减振效果评价结果影响显著;测试点所处地层动弹性模量若小于500 MPa,则对比测试断面之间的地层动力特性差异会对减振效果评价结果造成更加显著的影响。  相似文献   

18.
在列车正常运行条件下对某地铁曲线路段钢弹簧浮置板道床、科隆蛋和普通扣件轨道结构段的隧道壁振动和地面垂向振动进行现场测试,通过时域和频域分析对比地铁经过时不同轨道结构段振动从隧道壁传到地面以及地面垂向振动随距离的传播规律。结果表明:振动从隧道壁传至地面时200 Hz~500 Hz频段衰减较快,且地面垂向振动主频在100 Hz以内,隧道壁振动主频在300 Hz以内;钢弹簧浮置板道床和科隆蛋结构段的地面垂向振动随着离开线路中心线距离的增加而减小;在普通扣件结构段距线路中心线30 m左右处存在一个振动放大区;列车经过时轨道线正上方0~30 m范围内垂向振动的峰值频率主要在40 Hz至63 Hz。该测试方法和研究结果可为地铁线路设计提供相应参考。  相似文献   

19.
为确定城市轨道交通减振轨道的合理刚度,建立了车辆-轨道耦合动力学模型,计算了3~200 kN/mm钢轨支座刚度及3~6级不平顺谱工况下轨道的动力响应。通过小波包分析对系统振动速度、加速度信号的能量特性进行了处理,获得了轨道振动能量随钢轨支座刚度及不平顺的变化规律,最后以轨道系统总能量最低为标准,提出了城市轨道交通减振轨道最优刚度建议值。结果表明:轨道速度信号能量随钢轨支座刚度单调递减;轨道加速度信号能量随钢轨支座刚度先减小后增大;高刚度轨道对不平顺敏感,不平顺的增大会加剧轮轨振动;城市轨道交通减振轨道钢轨支座刚度最优值为5~10 kN/mm,可通过扣件减振措施与枕下减振措施组合实现,钢弹簧浮置板道床措施适用范围最广。  相似文献   

20.
通过对地铁隧道内普通整体道床、Ⅲ型轨道减振器、弹性短轨枕、梯形轨枕、钢弹簧浮置板道床的现场振动测试,进行时、频域对比,了解各种减振措施在不同频率范围内的减振效果差异。结果表明,轨道减振器、梯形轨枕、弹性短轨枕及钢弹簧浮置板可分别降低隧道壁VLZmax分别为4 dB,7.6 dB,7.8 dB,19.0 dB;无论何种轨道减振措施,高频减振效果高于低频减振效果, Z计权的振动加速度级明显小于不计权的振动加速度级减振效果;梯形轨枕、弹性短轨枕、轨道减振器对50 Hz以上振动减振效果明显,钢弹簧浮置板道床对12.5 Hz以上振动减振效果明显,对控制列车运行产生的二次噪声更有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号